

Studentnumber:	
Name:	

School of Business and Economics

school of Business and Econon	iics		
Exam:	Data Analysis 1		
Code:	E_EOR1_DA1		
Examinator:	Paolo Gorgi		
Co-reader:	Hande Karabiyik		
Date:	February 4, 2022		
Time:	15:30		
Duration:	2 hours		
Calculator allowed:	Yes		
Graphical calculator allowed:	No		
Scrap paper	Yes		
Number of questions:	3		
Type of questions:	Open		
Answer in:	English		
Remarks:			

Credit score: 100 credits counts for a 10

Grades: The grades will be made public within 10 working days

Inspection: TBA

Number of pages: 5

Good luck!

(This page is intentionally left blank.)

Question 1 (33/100 points)

(a) Consider the following data points

$$-6.7$$
; -2.5 ; 3.2 ; -2.1 ;

Obtain the sample mean and the sample variance.

(b) You have available a dataset that contains two variables x and y. For each variable, you have obtained the boxplot given below (boxplot of x is on the left and boxplot of y is on the right).

A colleague of yours makes the following statements:

- (i) "I expect both variables to have a negative skewness".
- (ii) "I expect the sample variance of x to be smaller than the sample variance of y".
- (iii) "I expect the kurtosis of y to be larger than the kurtosis of x".
- (iv) "I expect the variables to have a positive correlation r_{xy} ".

For each statement, say whether you agree or not. Justify your answers.

(c) The R vectors "age" and "salary" contain the age and the monthly salary of 1000 individuals. The following R code is given:

```
n <- length(age)
out <- rep(0,n)
k <- 1
while(k <= n){
    if(age[k]>45){
        out[k] <- income[k]
        if(income[k]<=mean(income)){out[k] <- 0}
    }
    k <- k+1
}</pre>
```

Explain briefly what the R code is doing. What is contained in "out" after the *while loop*?

How would you write some R code that produces the same result but without using a loop? Sketch the code and explain what it does.

Question 2 (34/100 points)

- (a) You have available a dataset that contains the variables math_score and country for some high school students. The variable math_score reports the result of an international math test and the variable country indicates the country of residence of the student. The variable country takes 3 possible values: 0 if the student is a resident of Belgium, 1 if the student is a resident of The Netherlands, and 2 if the student is a resident of Germany. You are interested in regressing math_score on country. Write down the regression model you would consider. Justify your choice. Discuss the interpretation of the regression coefficients of the model you have proposed.
- (b) Available is a dataset with 2 variables and n = 12 observations for each of the 2 variables. Consider a linear regression model of the form $y_i = \beta_0 + \beta_1 x_i + u_i$. The OLS estimates of β_0 and β_1 , the R^2 and the explained sum of squares (ESS) are obtained:

$$\hat{\beta}_0 = -6.5$$
, $\hat{\beta}_1 = -3.1$, $R^2 = 0.90$, $ESS = 122.5$.

- (i) Obtain a prediction of y given x = 3.5.
- (ii) Obtain the standard error of the regression (SER).
- (iii) Obtain the sample variances of the variables s_x^2 and s_y^2 .
- (c) A colleague of yours has estimated the following regression models using a variable of interest y_i and 2 regressors, $x_{1,i}$ and $x_{2,i}$, i = 1, ..., n.
 - $(1) y_i = \beta_0 + \beta_1 x_{1,i} + u_i.$
 - (2) $y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{1,i}^2 + u_i$.
 - (3) $y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + u_i$.

Your colleague makes the following 2 statements:

- (i) "If the adjusted R^2 (adj- R^2) of model (1) is larger than the adj- R^2 of model (2), we can conclude that the relationship between y and x_1 is linear."
- (ii) "I have obtained that the R^2 of model (3) is larger than the R^2 of model (2). Instead, the adj- R^2 of model (2) is larger than the adj- R^2 of model (3). There must be an error since R^2 and adj- R^2 provide the same information."

Comment on each statement and say whether you agree or not. Justify your answers.

Question 3 (33/100 points)

- (a) We have an observation x that we want to classify as a member of any of the three populations Π_1 , Π_2 and Π_3 . We know that population Π_1 has an exponential distribution with rate $\lambda=1$, population Π_2 has an exponential distribution with rate $\lambda=2$ and population Π_3 has an exponential distribution with rate $\lambda=4$.
 - (i) Obtain the discriminant regions R_1 , R_2 and R_3 based on the Maximum Likelihood (ML) discriminant rule.
 - (ii) Obtain the probabilities of correct classification p_{11} , p_{22} and p_{33} of the ML rule.
- (b) Consider the ML discriminant rule with two normal populations with means μ_1 and μ_2 , $\mu_1 > \mu_2$, and the same variance σ^2 . The discriminant regions are $R_1 = \{x : x > \frac{\mu_2 + \mu_1}{2}\}$ and $R_2 = \{x : x \leq \frac{\mu_2 + \mu_1}{2}\}$.

Show that the misclassification probabilities are given by

$$p_{12} = p_{21} = \Phi\left(-\frac{\mu_1 - \mu_2}{2\sigma}\right)$$
,

where $\Phi(\cdot)$ is the cumulative distribution function of the standard normal distribution.

(c) You have implemented for a given dateset the ML discriminant rule based on two normal populations with means μ_1 and μ_2 , $\mu_1 > \mu_2$, and the same variance σ^2 . A colleague of yours suggest to estimate the misclassification probabilities p_{12} and p_{21} as follows

$$\hat{p}_{12} = \hat{p}_{21} = \Phi\left(-rac{ar{x}_1 - ar{x}_2}{2s}
ight)$$
 ,

where \bar{x}_1 and \bar{x}_2 are the sample mean of the observations from populations 1 and 2, and s is the sample standard deviation. Discuss potential advantages (if any) and disadvantages (if any) of the method proposed by your colleague. Could you present an alternative approach to estimate p_{12} and p_{21} ?

End of the exam!

$$f(x) = \lambda e^{-\lambda x}, \quad x > 0$$

¹The probability density function of an exponential distribution with rate $\lambda > 0$ is