| Studentnumber: | | |----------------|--| | Name: | | # School of Business and Economics | school of Business and Econon | iics | | | |-------------------------------|------------------|--|--| | Exam: | Data Analysis 1 | | | | Code: | E_EOR1_DA1 | | | | Examinator: | Paolo Gorgi | | | | Co-reader: | Hande Karabiyik | | | | Date: | February 4, 2022 | | | | Time: | 15:30 | | | | Duration: | 2 hours | | | | Calculator allowed: | Yes | | | | Graphical calculator allowed: | No | | | | Scrap paper | Yes | | | | Number of questions: | 3 | | | | Type of questions: | Open | | | | Answer in: | English | | | | Remarks: | Credit score: 100 credits counts for a 10 Grades: The grades will be made public within 10 working days Inspection: TBA Number of pages: 5 Good luck! (This page is intentionally left blank.) ## Question 1 (33/100 points) (a) Consider the following data points $$-6.7$$; -2.5 ; 3.2 ; -2.1 ; Obtain the sample mean and the sample variance. (b) You have available a dataset that contains two variables x and y. For each variable, you have obtained the boxplot given below (boxplot of x is on the left and boxplot of y is on the right). A colleague of yours makes the following statements: - (i) "I expect both variables to have a negative skewness". - (ii) "I expect the sample variance of x to be smaller than the sample variance of y". - (iii) "I expect the kurtosis of y to be larger than the kurtosis of x". - (iv) "I expect the variables to have a positive correlation r_{xy} ". For each statement, say whether you agree or not. Justify your answers. (c) The R vectors "age" and "salary" contain the age and the monthly salary of 1000 individuals. The following R code is given: ``` n <- length(age) out <- rep(0,n) k <- 1 while(k <= n){ if(age[k]>45){ out[k] <- income[k] if(income[k]<=mean(income)){out[k] <- 0} } k <- k+1 }</pre> ``` Explain briefly what the R code is doing. What is contained in "out" after the *while loop*? How would you write some R code that produces the same result but without using a loop? Sketch the code and explain what it does. ## Question 2 (34/100 points) - (a) You have available a dataset that contains the variables math_score and country for some high school students. The variable math_score reports the result of an international math test and the variable country indicates the country of residence of the student. The variable country takes 3 possible values: 0 if the student is a resident of Belgium, 1 if the student is a resident of The Netherlands, and 2 if the student is a resident of Germany. You are interested in regressing math_score on country. Write down the regression model you would consider. Justify your choice. Discuss the interpretation of the regression coefficients of the model you have proposed. - (b) Available is a dataset with 2 variables and n = 12 observations for each of the 2 variables. Consider a linear regression model of the form $y_i = \beta_0 + \beta_1 x_i + u_i$. The OLS estimates of β_0 and β_1 , the R^2 and the explained sum of squares (ESS) are obtained: $$\hat{\beta}_0 = -6.5$$, $\hat{\beta}_1 = -3.1$, $R^2 = 0.90$, $ESS = 122.5$. - (i) Obtain a prediction of y given x = 3.5. - (ii) Obtain the standard error of the regression (SER). - (iii) Obtain the sample variances of the variables s_x^2 and s_y^2 . - (c) A colleague of yours has estimated the following regression models using a variable of interest y_i and 2 regressors, $x_{1,i}$ and $x_{2,i}$, i = 1, ..., n. - $(1) y_i = \beta_0 + \beta_1 x_{1,i} + u_i.$ - (2) $y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{1,i}^2 + u_i$. - (3) $y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + u_i$. Your colleague makes the following 2 statements: - (i) "If the adjusted R^2 (adj- R^2) of model (1) is larger than the adj- R^2 of model (2), we can conclude that the relationship between y and x_1 is linear." - (ii) "I have obtained that the R^2 of model (3) is larger than the R^2 of model (2). Instead, the adj- R^2 of model (2) is larger than the adj- R^2 of model (3). There must be an error since R^2 and adj- R^2 provide the same information." Comment on each statement and say whether you agree or not. Justify your answers. ## Question 3 (33/100 points) - (a) We have an observation x that we want to classify as a member of any of the three populations Π_1 , Π_2 and Π_3 . We know that population Π_1 has an exponential distribution with rate $\lambda=1$, population Π_2 has an exponential distribution with rate $\lambda=2$ and population Π_3 has an exponential distribution with rate $\lambda=4$. - (i) Obtain the discriminant regions R_1 , R_2 and R_3 based on the Maximum Likelihood (ML) discriminant rule. - (ii) Obtain the probabilities of correct classification p_{11} , p_{22} and p_{33} of the ML rule. - (b) Consider the ML discriminant rule with two normal populations with means μ_1 and μ_2 , $\mu_1 > \mu_2$, and the same variance σ^2 . The discriminant regions are $R_1 = \{x : x > \frac{\mu_2 + \mu_1}{2}\}$ and $R_2 = \{x : x \leq \frac{\mu_2 + \mu_1}{2}\}$. Show that the misclassification probabilities are given by $$p_{12} = p_{21} = \Phi\left(-\frac{\mu_1 - \mu_2}{2\sigma}\right)$$, where $\Phi(\cdot)$ is the cumulative distribution function of the standard normal distribution. (c) You have implemented for a given dateset the ML discriminant rule based on two normal populations with means μ_1 and μ_2 , $\mu_1 > \mu_2$, and the same variance σ^2 . A colleague of yours suggest to estimate the misclassification probabilities p_{12} and p_{21} as follows $$\hat{p}_{12} = \hat{p}_{21} = \Phi\left(- rac{ar{x}_1 - ar{x}_2}{2s} ight)$$, where \bar{x}_1 and \bar{x}_2 are the sample mean of the observations from populations 1 and 2, and s is the sample standard deviation. Discuss potential advantages (if any) and disadvantages (if any) of the method proposed by your colleague. Could you present an alternative approach to estimate p_{12} and p_{21} ? #### End of the exam! $$f(x) = \lambda e^{-\lambda x}, \quad x > 0$$ ¹The probability density function of an exponential distribution with rate $\lambda > 0$ is