

Studentnumber:	
Name:	

School of Business and Economics

School of Business and Econor	nics		
Exam:	Data Analysis 1		
Code:	E_EOR1_DA1		
Examinator:	Paolo Gorgi		
Co-reader:	Hande Karabiyik		
Date:	March 16, 2021		
Time:	16:00		
Duration:	2 hours		
Calculator allowed:	Yes		
Graphical calculator allowed:	No		
Scrap paper	Yes		
Number of questions:	3		
Type of questions:	Open		
Answer in:	English		
Remarks:			

Credit score: 100 credits counts for a 10

Grades: The grades will be made public within 10 working days

Inspection: TBA

Number of pages: 5

Good luck!

(This page is intentionally left blank.)

Question 1 (33/100 points)

(a) Consider the following dataset

$$5.2;$$
 $-3.2;$ $-2.6;$ $1.9;$

Obtain the sample mean and sample variance.

(b) You have available a dataset that contains two variables *x* and *y*. For each variable, you have obtained the first, second and third quartile, which are given by

```
-Variable x: Q_1 = 1.4, Q_2 = 2.8 and Q_3 = 7.4
-Variable y: Q_1 = 2.2, Q_2 = 4.3 and Q_3 = 6.4
```

A colleague of yours makes the following statements:

- (i) "About 75% of the observations of x are contained in the interval [1.4, 7.4] and about 75% of the observations of y are contained in the interval [2.2, 6.4]".
- (ii) "I expect the sample variance of x to be larger than the sample variance of y".
- (iii) "I expect x to have skewness close to zero and instead y to have a strong negative skewness". For each statement, say whether you agree or not. Justify your answers.
- (c) The R vector "income" contains the annual income of 350 citizens. The following R code is given:

```
n <- length(income)
x <- rep(0,n)

for(i in 1:n){
   if(income[i] < median(income)) { next}
   x[i] <- income[i]
}</pre>
```

What is contained in the R object x after running the for loop given above? Explain briefly what the R code is doing. How would you write some R code that produces the same result but without using a loop? Sketch the code and explain what it does.

Question 2 (34/100 points)

(a) Available is a dataset with 2 variables and n=12 observations for each of the 2 variables. Consider a linear regression model of the form $y_i = \beta_0 + \beta_1 x_i + u_i$. The sample means \bar{x} and \bar{y} , the sample variances s_x^2 and s_y^2 , and the sample correlation r_{xy} between x and y are given:

$$\bar{x} = -1.5$$
, $\bar{y} = 0.9$, $s_x^2 = 2.1$, $s_y^2 = 3.5$, $r_{xy} = -0.95$.

- (i) Obtain the OLS estimates $\hat{\beta}_0$ and $\hat{\beta}_1$.
- (ii) Obtain the R^2 of the regression.
- (iii) Obtain the total sum of squares (TSS), the residuals sum of squares (RSS) and the explained sum of squares (ESS) of the regression.
- (iv) Obtain the standard error of the regression (SER).
- (b) A colleague of yours has estimated the following regression models using a variable of interest y_i and 2 regressors, $x_{1,i}$ and $x_{2,i}$, i = 1, ..., n.
 - (1) $y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + u_i$.
 - (2) $y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{1,i}^2 + u_i$.

The colleague makes the following 2 statements:

- (i) "I have obtained that the R^2 of model (1) is larger than the R^2 of model (2). This means that the relationship between y and x_1 is linear."
- (ii) "The OLS estimate of β_1 is positive in model (1) and negative in model (2). This means that model (1) suggests a positive relationship between x_1 and y and model (2) suggests a negative relationship between x_1 and y. There must be an error."

For each statement, say whether you agree or not. Justify your answers.

(c) Consider the regression model without the intercept $y_i = \beta_1 x_i + u_i$ with OLS estimate of β_1 given by

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n x_i y_i}{\sum_{i=1}^n x_i^2}.$$

Does the estimated regression line of this model go through the point (\bar{x},\bar{y}) , where \bar{x} and \bar{y} are the sample means of x and y? Justify your answer.

3

Question 3 (33/100 points)

(a) Consider the following *confusion matrix* containing the number of misclassified and correctly classified observations for the populations Π_1 and Π_2 .

Obtain the estimated probabilities of misclassification \hat{p}_{12} and \hat{p}_{21} and the apparent error rate (APER).

- (b) We have an observation x that we want to classify as a member of any of the three populations Π_1 , Π_2 and Π_3 . We know that population Π_1 has an exponential distribution with rate $\lambda=1$, population Π_2 has an exponential distribution with rate $\lambda=4$ and population Π_3 has a uniform distribution between -1 and 0 (i.e. $f_3(x) \sim U(-1,0)$).
 - (i) Obtain the discriminant regions R_1 , R_2 and R_3 based on the Maximum Likelihood (ML) discriminant rule. Draw a graph of the densities $f_1(x)$, $f_2(x)$ and $f_3(x)$ of the three populations.
 - (ii) Obtain the probabilities of correct classification p_{11} , p_{22} and p_{33} of the ML rule.
- (c) Assume we have two normal populations Π_1 and Π_2 with means equal to zero and different variances σ_1^2 and σ_2^2 , $\sigma_1^2 > \sigma_2^2$. More specifically, we have $f_1(x) \sim N(0, \sigma_1^2)$ and $f_2(x) \sim N(0, \sigma_2^2)$. The discriminant regions R_1 and R_2 of the ML discriminant rule are

$$R_1 = \left(-\infty, -g(\sigma_1^2, \sigma_2^2)\right] \cup \left[g(\sigma_1^2, \sigma_2^2), +\infty\right), \quad R_2 = \left(-g(\sigma_1^2, \sigma_2^2), g(\sigma_1^2, \sigma_2^2)\right).$$

where

$$g(\sigma_1^2, \sigma_2^2) = \sqrt{\log(\sigma_1^2/\sigma_2^2) \frac{\sigma_1^2 \sigma_2^2}{\sigma_1^2 - \sigma_2^2}}$$

Derive the expressions of the probabilities of misclassification p_{12} and p_{21} (as functions of σ_1^2 and σ_2^2). Discuss how the variances σ_1^2 and σ_2^2 affect the misclassification probabilities p_{12} and p_{21} .

End of the exam!

$$f(x) = \lambda e^{-\lambda x}, \quad x > 0$$

¹The probability density function of an exponential distribution with rate $\lambda > 0$ is