
Question 1 (33/100 points)

(a) [8 points] Consider the following data points

7.7; −3.5; 8.6; 2.8; −1.7; −1.2; 0.5

Obtain the 1st, 2nd and 3rd quartile of this dataset

Answer:

After sorting the data points from the smallest to largest, we immediately see that 1st

quartile is Q1 = −1.7, the 2nd is Q2 = 0.5, and the 3rd is Q3 = 7.7.

(b) [15 points] You have obtained the skewness and kurtosis of a certain variable. The

skewness is γ1 = −2.35 and the kurtosis is γ2 = 7.33. A colleague of yours makes the

following statements:

(i) “The variable is leptokurtic and the left tail is heavier than the right tail”.

(ii) “There are outliers on the left tail of the distribution but not on the right tail”.

(iii) “I expect the mean to be larger than the median because the median is robust to outliers”.

For each statement, say whether you agree or not. Justify your answers.

Answer:

(i) The statement is true. The kurtosis larger than 3 indicates that the distribution is

leptokurtic and the negative skewness suggests that the left tail is heavier than the

right tail.

(ii) It is true that the large kurtosis and negative skewness indicate presence of outliers

on the left tail. On the other hand, it is not necessarily true that there are no outliers

on the right tail. The kurtosis does not provide information on whether outliers are on

the left or right tail and the negative skewness only suggests that the left tail is heavier.

However, there may be outliers on the right tail as well.

(iii) The statement is not true. The left tail is heavier than the right tail. This means

that there should be “more” outliers on the left tail and therefore the mean should be

lower than the median since the mean will be affected by these outliers and instead the

median will be robust.

(c) [10 points] The data frame grades contains the variables name, math1, math2 and math final.

The variable name contains the names of the students, the variable math1 contains the

grades of the 1st part of a Math exam, the variable math2 contains the grades of the 2nd

part of the Math exam, and the variable math final contains the final grade, which is

missing. The dataset is given below:

> grades

names math1 math2 math_final

1



1 Bob 6.5 4.5 NA

2 Lucy 5.5 8.5 NA

3 Eve 5.0 7.5 NA

4 Mark 7.0 5.0 NA

The following R code is given:

n <- length(grades$names)

k <- 1

repeat{

grades$math_final[k] <- 0.3*grades$math1[k]+0.7*grades$math2[k]

k <- k+1

if(k>n){break}

}

Explain briefly what the R code is doing. What will be contained in math_final after

the repeat loop?

The teacher of the course wants to set a minimum grade of 5.5 for each part of the

exam in order to pass the course. She wants the final grade to be equal to the minimum

between the grades of the two parts if at least one of the two parts has a grade that is

lower than 5.5. How would you adjust the code to account for this? Sketch the code

and explain what it does.

Answer:

The code stores the number of rows in the dataset in the R object n. Then, the repeat

loop computes the final grade of each student as a weighted average between the 1st

and 2nd part of the exam (weight 0.3 on the 1st part and 0.7 on the 2nd). The loop is

stopped when the index k is larger than the number of rows in the dataset. After the

loop, the vector math_final contains (5.1, 7.6, 6.75, 5.6).
To set the minimum grade of the 5.5, the code can be adjusted as follows

repeat{

grades$math_final[k] <- 0.3*grades$math1[k]+0.7*grades$math2[k]

if(grades$math1[k]<5.5 | grades$math2[k]<5.5) {

grades$math_final[k] <- min(grades$math1[k],grades$math2[k])

}

k <- k+1

if(k>n){break}

}
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Question 2 (34/100 points)

(a) [10 points] You have a dataset with three variables: x, y and z. The sample means,

variances and covariances are obtained:

x̄ = −6.9, ȳ = 0.7, z̄ = 1.2; s2
x = 6.3, s2

y = 1.0, s2
z = 9.1;

sxy = 1.3, sxz = 3.5, syz = −2.6.

Say whether you agree or not with the following statements. Justify your answers.

(i) “The relationship between x and z is stronger than the relationship between x and y.”

(ii) “The simple linear regression model y = β0 + β1x + u will produce better predictions of y

than the simple linear regression model y = β0 + β1z + u.”

Answer:

(i) The statement is not true. The sample correlation between x and y is 0.47 instead

the sample correlation between x and y is 0.52. Therefore, the sample statistics may

actually indicate that the linear relationship between x and y is weaker than the rela-

tionship between x and y. The sample covariance does not provide and indication of

how strong the relationship is.

(ii) The statement is not true. The sample correlation between y and z is −0.86. There-

fore, the linear relationship between y and z is stronger than the one between x and

y. The model y = β0 + β1x + u has R2 = 0.27 and the model y = β0 + β1z + u has

R2 = 0.74. This meas that the 2nd model explains more of the variability of y and

therefore it is expected to produce better predictions.

(b) [14 points] Available is a dataset with 2 variables and n = 16 observations for each of

the 2 variables. Consider a linear regression model of the form yi = β0 + β1xi + ui. The

OLS estimates of β0 and β1, the R2 and the standard error of the regression (SER) are

obtained:

β̂0 = 2.3, β̂1 = −1.7, R2 = 0.85, SER = 3.5.

(i) Obtain a prediction of y given x = −2.0.

(ii) Obtain the total sum of squares (TSS), the residuals sum of squares (RSS) and the

explained sum of squares (ESS) of the regression.

(iii) Obtain the sample correlation rxy between x and y.

Answer:

(i) The prediction is 2.3− 1.7× (−2.0) = 5.7.

(ii) First, we obtain the the RSS form the SER. We know that SER =
√

RSS/(n− 2).

Therefore, we obtain

RSS = (n− 2)× SER2 = 14× 3.52 = 171.5.
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Next, we obtain the TSS as follows

TSS = RSS/(1− R2) = 171.5/0.15 = 1143.3.

Finally, we obtain the ESS as follows

ESS = TSS− RSS = 1143.3− 171.5 = 971.8.

(iii) We can obtain the sample correlation from the equation R2 = r2
xy. We have that

|rxy| =
√

R2 = 0.92. The sign of the sample correlation is negative since β̂1 is negative.

Therefore, we obtain rxy = −0.92

(c) [10 points] A colleague of yours has estimated the following regression models using

a variable of interest yi and 3 regressors, x1,i x2,i and x3,i, i = 1, . . . , n.

(1) yi = β0 + β1x1,i + ui.

(2) yi = β0 + β1x1,i + β2x2,i + ui.

(3) yi = β0 + β2x2,i + β3x3,i + ui.

Your colleague makes the following 2 statements:

(i) “The adjusted R2 (adj-R2) of model (1) is larger than the adj-R2 of model (2). Therefore,

model (1) is better than model (2). This also means that there is no relationship between y and

x2.”

(ii) “I have obtained that the R2 of model (1) is larger than the R2 of model (3). There must be

an error since model (3) has more variables than model (1) and therefore its R2 must be larger.”

For each statement, say whether you agree or not. Justify your answers.

Answer:

(i) It is true that if the adj-R2 of model (1) is larger than the adj-R2 of model (2), then

model (1) can be considered better. This also suggest that conditional on x1, there

is no linear relationship between y and x2. However, there may be some nonlinear

relationship between y and x2.

(ii) I do not agree with the statement. The R2 of model (1) does not need to be larger

than the R2 of model (2). Model (2) does not include the variable x1. Therefore, the

result can be due to the fact that x1 has a stronger linear relationship with y.
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Question 3 (33/100 points)

(a) [15 points] We have an observation x that we want to classify as a member of any of

the three populations Π1, Π2 and Π3. We know that population Π1 has an exponential

distribution1 with rate λ = 1, population Π2 has a uniform distribution between 0 and

2 (i.e. f2(x) ∼ U(0, 2)) and population Π3 has a uniform distribution between -1 and 3

(i.e. f3(x) ∼ U(−1, 3)).

(i) Obtain the discriminant regions R1, R2 and R3 based on the Maximum Likelihood

(ML) discriminant rule. Draw a graph of the densities f1(x), f2(x) and f3(x) of the

three populations.

(ii) Obtain the probabilities of correct classification p11, p22 and p33 of the ML rule.

Answer:

(i) First, we obtain a plot of the densities To obtain the first region, we obtain the set
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of points such that f1(x) > f2(x) and f1(x) > f3(x). The exponential density is a

decreasing function in the positive real line. Furthermore, we have f1(x) = f2(x) if

exp(−x) = 1/2 ⇔ x = log(2),

1The probability density function of an exponential distribution with rate λ > 0 is

f (x) = λe−λx, x > 0
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and f1(x) = f3(x) if

exp(−x) = 1/4 ⇔ x = log(4).

Note that log(4) < 2. Therefore, we obtain that R1 = (0, log(2)) ∪ (3, ∞), R2 =

(log(2), 2), and R3 = (−1, 0) ∪ (2, 3).

(ii) The correct classification probabilities are

p11 =
∫

R1

f1(x)dx =
∫ log(2)

0
e−xdx +

∫ ∞

3
e−xdx = 1− 1

2
+ e−3,

p22 =
∫

R2

f2(x)dx = (2− log(2))× 1
2
= 1− log(2)

2
,

p33 =
∫

R3

f3(x)dx = (2)× 1
4
=

1
2

.

(b) [8 points] Consider the ML discriminant rule with two normal populations with means

µ1 and µ2, µ1 > µ2, and the same variance σ2. The missclassification probabilities are

given by

p12 = p21 = Φ
(
−µ1 − µ2

2σ

)
,

where Φ(·) is the cumulative distribution function of the standard normal distribution.

Discuss how the means µ1 and µ2 and the variance σ2 of the normal distributions affect

the missclassification probabilities p12 and p21.

Answer:

The missclassification probabilities are large if the means µ1 and µ2 are close to each

other and small if they are far apart. The extreme case where µ1 ≈ µ2 leads to miss-

classification probabilities equal to 0.5. This makes sense since it will be harder to

discriminated between the two populations when they have a similar mean. When the

variance is large, the missclassification probabilities will be large. Instead, they will be

small when the variance is small. This also makes sense since a large variance indi-

cates that the densities are widely dispersed along the real line and therefore it will be

harder to discriminate between them.

(c) [10 points] Assume we have two normal2 populations Π1 and Π2 with means equal

to zero and different variances σ2
1 and σ2

2 , σ2
1 > σ2

2 . More specifically, we have f1(x) ∼
N(0, σ2

1 ) and f2(x) ∼ N(0, σ2
2 ). Derive the discriminant regions R1 and R2 of the ML

discriminant rule.
2The probability density function of a normal N(µ, σ2) is

f (x) =
1

σ
√

2π
exp

(
− (x− µ)2

2σ2

)
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Answer:

The discriminant region R1 is the set of values such that f1(x) > f2(x). We obtain

1
σ1
√

2π
exp

(
− x2

2σ2
1

)
>

1
σ2
√

2π
exp

(
− x2

2σ2
2

)
⇔ − 1

2
log(σ2

1 )−
x2

2σ2
1
> −1

2
log(σ2

2 )−
x2

2σ2
2

⇔ x2
(

1
σ2

2
− 1

σ2
1

)
> log(σ2

1 )− log(σ2
2 )

(since σ1 > σ2) ⇔ x2 > log(σ2
1 /σ2

2 )
σ2

1 σ2
2

σ2
1 − σ2

2
.

Therefore, the discriminant region R1 is

R1 =

(
−∞, −

√
log(σ2

1 /σ2
2 )

σ2
1 σ2

2

σ2
1 − σ2

2

)
∪
(√

log(σ2
1 /σ2

2 )
σ2

1 σ2
2

σ2
1 − σ2

2
, ∞

)
,

and the discriminant region R2 is

R2 =

(
−

√
log(σ2

1 /σ2
2 )

σ2
1 σ2

2

σ2
1 − σ2

2
,

√
log(σ2

1 /σ2
2 )

σ2
1 σ2

2

σ2
1 − σ2

2

)
.
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