

School of Business and Economics

Exam: Data Analysis 1

Code: E_EOR1_DA1

Examinator: dr. Paolo Gorgi Co-reader: dr. Hande Karabiyik

Date: February 2, 2018

Time: 15:15

Duration: 2 hours

Calculator allowed: Yes

Graphical calculator

allowed: No

Number of questions: 3

Type of questions: Open

Answer in: English

Credit score: 100 credits counts for a 10

Grades: The grades will be made public within 10 working days

Inspection: TBA

Number of pages: 4 (including front page)

Good luck!

(This page is intentionally left blank.)

Question 1 (30/100 points)

(a) Find the sample variance of the following 3 data points:

- (b) For a certain variable you have obtained that the skewness is -2.2 and the kurtosis is 12.5. What can you say about the distribution of the observations? Would you expect to have some outliers?
- (c) Consider the following R code

What is in the R object z? Explain briefly what the R code is doing.

(d) The following R code with a for loop is given

```
> v <- 1:5
>
> for(i in 1:5){
+   if(v[i]==4) {break}
+   v[i] <- v[i]-1
+ }</pre>
```

What is in the R object v after running the for loop? Explain briefly what the R code is doing.

Question 2 (40/100 points)

(a) Available is a dataset with 2 variables and n=100 observations for each of the 2 variables. Consider a linear regression model of the form $y_i=\beta_0+\beta_1x_i+u_i$. The OLS estimates of β_0 and β_1 ($\hat{\beta}_0$ and $\hat{\beta}_1$), the *RSS* and the *TSS* are obtained:

$$\hat{\beta}_0 = 2.6$$
, $\hat{\beta}_1 = 1.5$, $RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = 308.6$, $TSS = \sum_{i=1}^{n} (y_i - \bar{y})^2 = 558.6$.

- (i) Interpret the coefficient estimates $\hat{\beta}_0$ and $\hat{\beta}_1$.
- (ii) Obtain a prediction for the variable *y* when the observed *x* is equal to 3.5.
- (iii) Obtain the R^2 and the standard error of the regression (SRE).

- (b) A colleague of yours has estimated the linear regression model $y_i = \beta_0 + \beta_1 x_i + u_i$ using a certain dataset. She claims that the adjusted- R^2 (R^2_{Adj}) obtained from the regression is negative. Is this possible? Why? What can you say about the relationship between the variable y_i and x_i ?
- (c) Consider the regression model without intercept given by $y_i = \beta_1 x_i + u_i$.
 - (i) Show that the OLS estimate of β_1 is

$$\tilde{\beta}_1 = \frac{\sum_{i=1}^{n} y_i x_i}{\sum_{i=1}^{n} x_i^2}$$

by setting the derivative of the sum of squares to zero.

(ii) Show that, in general, the equality TSS = ESS + RSS is no longer true in the regression model without the intercept.

Question 3 (30/100 points)

(a) Consider the following *confusion matrix* containing the number of misclassified and correctly classified observations for the populations Π_1 and Π_2 .

True membership

Predicted

	Π_1	Π_2
Π_1	$n_{11} = 125$	$n_{12} = 21$
Π_2	$n_{21} = 13$	$n_{22} = 174$

Obtain the estimated probabilities of misclassification \hat{p}_{12} and \hat{p}_{21} and the apparent error rate (APER).

(b) We have an observation x that we want to classify as a member of either population Π_1 or Π_2 . We know that the populations Π_1 and Π_2 have an exponential distribution with rates $\lambda_1=1$ and $\lambda_2=2$, respectively. Note that the density function of an exponential distribution with rate $\lambda>0$ is

$$f(x) = \lambda e^{-\lambda x}, \quad x > 0$$

- (i) Obtain the discriminant regions R_1 and R_2 based on the Maximum Likelihood (ML) discriminant rule.
- (ii) Obtain the misclassification probabilities p_{12} and p_{12} .
- (iii) Assume that C(1|2) = 2C(2|1), that is, the misclassification cost C(1|2) is 2 times the misclassification cost C(2|1). How would you expect the regions R_1 and R_2 obtained from the ECM discriminant rule to differ from the ones obtained from the ML rule? Justify your answer. Do not calculate the ECM discriminant regions!

End of the exam!