
Question 1 (30/100 points)

(a) Find the sample variance of the following 3 data points:

1.0 ; 3.3 ; 2.6

(b) For a certain variable you have obtained that the skewness is −2.2 and the kurtosis is

12.5. What can you say about the distribution of the observations? Would you expect

to have some outliers?

(c) Consider the following R code

> x <- c(1, 5, 7, 3, 2)

> z <- x[x>=3]

What is in the R object z? Explain briefly what the R code is doing.

(d) The following R code with a for loop is given

> v <- 1:5

>

> for(i in 1:5){

+ if(v[i]==4) {break}

+ v[i] <- v[i]-1

+ }

What is in the R object v after running the for loop? Explain briefly what the R code is

doing.

Solution:

(a) We obtain that x̄ = 2.3 and s2 = 1.39

(b) As skewness equal to −2.2 indicates that the distribution is not symmetric about its

mean. In particular, we expect the left tail to be heavier than the right tail. Instead a

kurtosis equal to 12.5 indicates that the tails of the distribution are heavier than the tails

of a normal distribution. We say that the distribution is heavy-tailed or leptokurtic.

We expect to have outliers because outliers are extreme observations and therefore by

definition they lead to high kurtosis.

(c) The R object z is a vector containing the numbers 5, 7 and 3. The code is taking the

original vector x, selecting the values that are greater than or equal to 3 and storing

them into the vector z.
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(d) The R object v will contain the following values: 0, 1, 2, 4 and 5. The R code creates

the v that contains numbers from 1 to 5. The the loop takes each element and detract

1 until the loop gets top 4. At that point the command break is triggered and the loop

stops.

Question 2 (40/100 points)

(a) Available is a dataset with 2 variables and n = 100 observations for each of the 2

variables. Consider a linear regression model of the form yi = β0 + β1xi + ui. The OLS

estimates of β0 and β1 (β̂0 and β̂1), the RSS and the TSS are obtained:

β̂0 = 2.6, β̂1 = 1.5, RSS =
n

∑
i=1

(yi − ŷi)
2 = 308.6, TSS =

n

∑
i=1

(yi − ȳ)2 = 558.6.

(i) Interpret the coefficient estimates β̂0 and β̂1.

(ii) Obtain a prediction for the variable y when the observed x is equal to 3.5.

(iii) Obtain the R2 and the standard error of the regression (SRE).

(b) A colleague of yours has estimated the linear regression model yi = β0 + β1xi + ui

using a certain dataset. She claims that the adjusted-R2 (R2
Adj) obtained from the re-

gression is negative. Is this possible? Why? What can you say about the relationship

between the variable yi and xi?

(c) Consider the regression model without intercept given by yi = β1xi + ui.

(i) Show that the OLS estimate of β1 is

β̃1 =
∑n

i=1 yixi

∑n
i=1 x2

i

by setting the derivative of the sum of squares to zero.

(ii) Show that, in general, the equality TSS = ESS + RSS is no longer true in the

regression model without the intercept.

Solution:

(a) (i) The estimated intercept β̂0 indicates that the regression line is 2.6 when the ob-

served x is zero. This may not have a meaningful interpretation and in this case it is

unclear since it is not explained what the variables x and y are. Instead, the slope β̂1

indicates that a unit increase in x leads to an expected increase of 1.5 in y.

(ii) The prediction is given by ŷ = 2.6 + 1.5× 3.5 = 7.85.

(iii) The R2 is

R2 = 1− RSS
TSS

= 1− 308.6
558.6

= 0.45.
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The standard SRE is

SRE =

√
RSS
n− 2

=

√
308.6

98
= 1.77.

(b) The adjusted-R2 can be negative. Note that the R2 is always between 0 and 1 (when β0

is included) and the adjusted-R2 is equal to the R2 minus a penalty term that depends

on the number of regressors. Therefore it can be negative when the R2 is close to zero.

In this case the interpretation is that the variable x (as included in the model) does

not explain a relevant proportion of the variability of y. Therefore we could consider

the model with only the intercept. This means that there is not a linear relationship

between x and y. However, as we have seen in class, it may be that there is a nonlinear

relationship between x and y and this could be captured including powers of x.

(c) (i) See solution of exercises week 2.

(ii) We have that

TSS = ∑(yi − ȳ)2 = ∑(yi − ŷi + ŷi − ȳ)2

= ∑(yi − ŷi)
2 + ∑(ŷi − ȳ)2 + 2 ∑(yi − ŷi)(ŷi − ȳ)

= RSS + ESS + 2 ∑ ûi(ŷi − ȳ).

Therefore the results is proved if we can show that in general ∑ ûi(ŷi − ȳ) 6= 0. it is

immediate to see that

∑ ûi(ŷi − ȳ) = ∑ ûiŷi − ȳ ∑ ûi = β̂1 ∑ ûixi − ȳ ∑ ûi = ȳ ∑ ûi 6= 0,

where β̂1 ∑ ûixi = 0 from the first order condition obtained in the previous point.

Furthermore ȳ ∑ ûi 6= 0 in general because without the intercept there is no first order

condition ensuring that the sum of the residuals is zero.

Question 3 (30/100 points)

(a) Consider the following confusion matrix containing the number of misclassified and

correctly classified observations for the populations Π1 and Π2.

True membership
Π1 Π2

Predicted
Π1 n11 = 125 n12 = 21

Π2 n21 = 13 n22 = 174

Obtain the estimated probabilities of misclassification p̂12 and p̂21 and the apparent

error rate (APER).

(b) We have an observation x that we want to classify as a member of either population Π1

or Π2. We know that the populations Π1 and Π2 have an exponential distribution with
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rates λ1 = 1 and λ2 = 2, respectively. Note that the density function of an exponential

distribution with rate λ > 0 is

f (x) = λe−λx, x > 0

(i) Obtain the discriminant regions R1 and R2 based on the Maximum Likelihood (ML)

discriminant rule.

(ii) Obtain the misclassification probabilities p12 and p12.

(iii) Assume that C(1|2) = 2C(2|1), that is, the misclassification cost C(1|2) is 2 times

the misclassification cost C(2|1). How would you expect the regions R1 and R2 ob-

tained from the ECM discriminant rule to differ from the ones obtained from the ML

rule? Justify your answer. Do not calculate the ECM discriminant regions!

Solution:

(a) The estimated probabilities of misclassification p̂12 and p̂21 are

p̂12 =
n12

n12 + n22
=

21
21 + 174

= 0.108,

and

p̂12 =
n12

n21 + n11
=

13
13 + 125

= 0.094.

The APER is

APER =
n12 + n21

n21 + n11 + n12 + n22
=

13 + 21
13 + 21 + 125 + 174

= 0.102.

(b) (i) The densities are f1(x) = e−x and f1(x) = 2e−2x. Therefore we obtain that

f1(x) > f2(x)⇔ x > log(2).

Therefore R1 = (log(2),+∞) and R2 = (0, log(2)).

(ii) The misclassification probabilities are

p12 =
∫ ∞

log(2)
2e−2x =

1
4

,

and

p21 =
∫ log(2)

0
e−x =

1
2

.

(iii) We expect the region R2 of the ECM rule to be bigger than the region R2 for the

ML rule, and vice versa for R1. This should be the case because we afford an higher

cost when we misclassify an observation in R1 compared to when we misclassify an
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observation in R2. Therefore we expect R2 to be larger because by definition the ECM

rule minimizes the ECM.

End of the exam!
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