
Chapter 6 – Arithmetic

6.1. Overflow cases are specifically indicated. In all other cases, no overflow occurs.

010110 (+22) 101011 (−21) 111111 (−1)
+ 001001 + (+9) + 100101 + (−27) + 000111 + (+7)

011111 (+31) 010000 (−48) 000110 (+6)
overflow

011001 (+25) 110111 (−9) 010101 (+21)
+ 010000 + (+16) + 111001 + (−7) + 101011 + (−21)

101001 (+41) 110000 (−16) 000000 (0)
overflow

010110 (+22) 010110
− 011111 − (+31) + 100001

(−9) 110111

111110 (−2) 111110
− 100101 − (−27) + 011011

(+25) 011001

100001 (−31) 100001
− 011101 − (+29) + 100011

(−60) 000100
overflow

111111 (−1) 111111
− 000111 − (+7) + 111001

(−8) 111000

000111 (+7) 000111
− 111000 − (−8) + 001000

(+15) 001111

011010 (+26) 011010
− 100010 − (−30) + 011110

(+56) 111000
overflow

1

6.2. (a) In the following answers, rounding has been used as the truncation method
(see Section 6.7.3) when the answer cannot be represented exactly in the signed
6-bit format.

0.5: 010000 all cases

−0.123: 100100 Sign-and-magnitude
111011 1’s-complement
111100 2’s-complement

−0.75: 111000 Sign-and-magnitude
100111 1’s-complement
101000 2’s-complement

−0.1: 100011 Sign-and-magnitude
111100 1’s-complement
111101 2’s-complement

(b)

e = 2−6 (assuming rounding, as in (a))

e = 2−5 (assuming chopping or Von Neumann rounding)

(c) assuming rounding:

(a) 3
(b) 6
(c) 9
(d) 19

6.3. The two ternary representations are given as follows:

Sign-and-magnitude 3’s-complement
+11011 011011
−10222 212001

+2120 002120
−1212 221011

+10 000010
−201 222022

2

6.4. Ternary numbers with addition and subtraction operations:

Decimal Ternary Ternary
Sign-and-magnitude Sign-and-magnitude 3’s-complement

56 +2002 002002
−37 −1101 221122
122 11112 011112
−123 −11120 211110

Addition operations:

002002 002002 002002
+ 221122 + 011112 + 211110

000201 020121 220112

221122 221122 011112
+ 011112 + 211110 + 211110

010011 210002 222222

Subtraction operations:

002002 002002
− 221122 + 001101

010110

002002 002002
− 011112 + 211111

220120

002002 002002
− 211110 + 011120

020122

221122 221122
− 011112 + 211111

210010

221122 221122
− 211110 + 011120

010012

011112 011112
− 211110 + 011120

100002
overflow

3

6.5. (a)

x

y

x

y

x

y
c

s

x y s c

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

s = x ⊕ y

c = x y

(b)

Half
adder

Half
adder

ci+1

ci

sixi

yi

s

c

s

c

(c) The longest path through the circuit in Part (b) is 6 gate delays (including
input inversions) in producing si; and the longest path through the circuit in
Figure 6.2a is 3 gate delays in producing si, assuming that si is implemented as
a two-level AND-OR circuit, and including input inversions.

4

6.6. Assume that the binary integer is in memory location BINARY, and the string of
bytes representing the answer starts at memory location DECIMAL, high-order
digits first.

68000 Program:

MOVE #10,D2
CLR.L D1
MOVE BINARY,D1 Get binary number;

note that high-order
word in D1 is still zero.

MOVE.B #4,D3 Use D3 as counter.
LOOP DIVU D2,D1 Leaves quotient in

low half of D1 and
remainder in high half
of D1.

SWAP D1
MOVE.B D1,DECIMAL(D3)
CLR D1 Clears low half of D1.
SWAP D1
DBRA D3,LOOP

IA-32 Program:

MOV EBX,10
MOV EAX,BINARY Get binary number.
LEA EDI,DECIMAL
DEC EDI
MOV ECX,5 Load counter ECX.

LOOPSTART: DIV EBX [EAX]/[EBX]; quotient
in EAX and remainder
in EDX.

MOV [EDI + ECX],DL
LOOP LOOPSTART

5

6.7. The ARM and IA-32 subroutines both use the following algorithm to convert the
four-digit decimal integer D3D2D1D0 (each Di is in BCD code) into binary:

• Move D0 into register REG.

• Multiply D1 by 10.

• Add product into REG.

• Multiply D2 by 100.

• Add product into REG.

• Multiply D3 by 1000.

• Add product into REG.

(i) The ARM subroutine assumes that the addresses DECIMAL and BINARY
are passed to it on the processor stack in positions param1 and param2 as shown
in Figure 3.13. The subroutine first saves registers and sets up the frame pointer
FP (R12).

ARM Subroutine:

CONVERT STMFD SP!,{R0−R6,FP,LR} Save registers.
ADD FP,SP,#28 Load frame pointer.
LDR R0,[FP,#8] Load R0 and R1
LDR R0,[R0] with decimal digits.
MOV R1,R0
AND R0,R0,#&F [R0] = D0.
MOV R2,#&F Load mask bits into R2.
MOV R4,#10 Load multipliers
MOV R5,#100 into R4, R5, and R6.
MOV R6,#1000
AND R3,R2,R1,LSR #4 Get D1 into R3.
MLA R0,R3,R4,R0 Add 10D1 into R0.
AND R3,R2,R1,LSR #8 Get D2 into R3.
MLA R0,R3,R5,R0 Add 100D2 into R0.
AND R3,R2,R1,LSR #12 Get D3 into R3.
MLA R0,R3,R6,R0 Add 1000D3 into Ro.
LDR R1,[FP,#12] Store converted value
STR R0,[R1] into BINARY.
LDMFD SP!,{R0−R6,FP,PC} Restore registers

and return.

6

(ii) The IA-32 subroutine assumes that the addresses DECIMAL and BINARY
are passed to it on the processor stack in positions param1 and param2 as shown
in Figure 3.48. The subroutine first sets up the frame pointer EBP, and then
allocates and initializes the local variables 10, 100, and 1000, on the stack.

IA-32 Subroutine:

CONVERT: PUSH EBP Set up frame
MOV EBP,ESP pointer.
PUSH 10 Allocate and initialize
PUSH 100 local variables.
PUSH 1000
PUSH EDX Save registers.
PUSH ESI
PUSH EAX
MOV EDX,[EBP + 8] Load four decimal
MOV EDX,[EDX] digits into
MOV ESI,EDX EDX and ESI.
AND EDX,FH [EDX] = D0.
SHR ESI,4
MOV EAX,ESI
AND EAX,FH
MUL [EBP − 4]
ADD EDX,EAX [EDX] = binary of D1D0.
SHR ESI,4
MOV EAX,ESI
AND EAX,FH
MUL [EBP − 8]
ADD EDX,EAX [EDX] = binary of D2D1D0.
SHR ESI,4
MOV EAX,ESI
AND EAX,FH
MUL [EBP − 12]
ADD EDX,EAX [EDX] = binary of D3D2D1D0.
MOV EAX,[EBP + 12] Store converted
MOV [EAX],EDX value into BINARY.
POP EAX Restore registers.
POP ESI
POP EDX
ADD ESP,12 Remove local parameters.
POP EBP Restore EBP.
RET Return.

7

(iii) The 68000 subroutine uses a loop structure to convert the four-digit decimal
integer D3D2D1D0 (each Di is in BCD code) into binary. At the end of succes-
sive passes through the loop, register D0 contains the accumulating values D3,
10D3 +D2, 100D3+10D2+D1, and binary = 1000D3+100D2+10D1+D0.

Assume that DECIMAL is the address of a 16-bit word containing the four BCD
digits, and that BINARY is the address of a 16-bit word that is to contain the
converted binary value.

The addresses DECIMAL and BINARY are passed to the subroutine in registers
A0 and A1.

68000 Subroutine:

CONVERT MOVEM.L D0−D2,−(A7) Save registers.
CLR.L D0
CLR.L D1
MOVE.W (A0),D1 Load four decimal

digits into D1.
MOVE.B #3,D2 Load counter D3.

LOOP MULU.W #10,D0 Multiply accumulated
value in D0 by 10.

ASL.L #4,D1 Bring next Di digit
SWAP.W D1 into low half of D1.
ADD.W D1,D0 Add into accumulated

value in D0.
CLR.W D1 Clear out current
SWAP.W D1 digit and bring

remaining digits into
low half of D1.

DBRA D2,LOOP Check if done.
MOVE.W D0,(A1) Store binary result

in BINARY.
MOVEM.L (A7)+,D0−D2 Restore registers.
RTS Return.

8

6.8. (a) The output carry is 1 when A + B ≥ 10. This is the condition that requires
the further addition of 610.

(b)

(1) 0101 5
+ 0110 + 6

1011 > 1010 11

+ 0110
0001

output carry = 1

(2) 0011 3
+ 0100 + 4

0111 < 1010 7

(c)

B0B1B2B3A0A1A2A3

S3 S2 S1 S0

S3 S2 S1 S0

“ignore” 0

cout
0 0

cin4-bit adder

4-bit adder

“+610”

S3 S2 S1 S0

9

6.9. Consider the truth table in Figure 6.1 for the case i = n− 1, that is, for the sign
bit position. Overflow occurs only when xn−1 and yn−1 are the same and sn−1

is different. This occurs in the second and seventh rows of the table; and cn and
cn−1 are different only in those rows. Therefore, cn⊕ cn−1 is a correct indicator
of overflow.

6.10. (a) The additional logic is defined by the logic expressions:

c16 = GII

0 + P II

0 c0

c32 = GII

1 + P II

1 GII

0 + P II

1 P II

0 c0

c48 = GII

2 + P II

2 GII

1 + P II

2 P II

1 GII

0 + P II

2 P II

1 P II

0 c0

c64 = GII

3 + P II

3 GII

2 + P II

3 P II

2 GII

1 + P II

3 P II

2 P II

1 GII

0 + P II

3 P II

2 P II

1 P II

0 c0

This additional logic is identical in form to the logic inside the lookahead circuit
in Figure 6.5. (Note that the outputs c16, c32, c48, and c64, produced by the 16-
bit adders are not needed because those outputs are produced by the additional
logic.)

(b) The inputs GII
i

and P II
i

to the additional logic are produced after 5 gate
delays, the same as the delay for c16 in Figure 6.5. Then all outputs from the
additional logic, including c64, are produced 2 gate delays later, for a total of 7
gate delays. The carry input c48 to the last 16-bit adder is produced after 7 gate
delays. Then c60 into the last 4-bit adder is produced after 2 more gate delays,
and c63 is produced after another 2 gate delays inside that 4-bit adder. Finally,
after one more gate delay (an XOR gate), s63 is produced with a total of 7 + 2 +
2 + 1 = 12 gate delays.

(c) The variables s31 and c32 are produced after 12 and 7 gate delays, respec-
tively, in the 64-bit adder. These two variables are produced after 10 and 7 gate
delays in the 32-bit adder, as shown in Section 6.2.1.

10

6.11. (a) Each B cell requires 3 gates as shown in Figure 6.4a. The carries c1, c2,
c3, and c4, require 2, 3, 4, and 5, gates, respectively; and the outputs GI

0 and
P I

0 require 4 and 1 gates, as seen from the logic expressions in Section 6.2.1.
Therefore, a total of 12 + 19 = 31 gates are required for the 4-bit adder.

(b) Four 4-bit adders require 4× 31 = 124 gates, and the carry-lookahead logic
block requires 19 gates because it has the same structure as the lookahead block
in Figure 6.4. Total gate count is thus 143. However, we should subtract 4× 5 =
20 gates from this total corresponding to the logic for c4, c8, c12, and c16, that
is in the 4-bit adders but which is replaced by the lookahead logic in Figure 6.5.
Therefore, total gate count for the 16-bit adder is 143 − 20 = 123 gates.

6.12. The worst case delay path is shown in the following figure:

Row 2

Row 3

Row (n-1)

Row n

n cells

Each of the two FA blocks in rows 2 through n− 1 introduces 2 gate delays, for
a total of 4(n− 2) gate delays. Row n introduces 2n gate delays. Adding in the
initial AND gate delay for row 1 and all other cells, total delay is:

4(n− 2) + 2n + 1 = 6n− 8 + 1 = 6(n− 1)− 1

11

6.13. The solutions, including decimal equivalent checks, are:

_ _

×
(105)
(21)
(5)

(105)

×

0000 11
001 0 001 1 1

B
A

00101
1 1 100
00 01 1

0
01100

11000

10000
011

001
00 111 5 12

20
1

4

12

6.14. The multiplication and division charts are:

_ _

0

0

0

0

0

0

1

1

000101
000000

add
000000000000

add
000000
000101

1

1

0

0

1

1

shift

shift
add

subtract
shift

3rd cycle

2nd cycle

0

0

1

1

111011

111101
000101
111000

0111100
111011
000001 0

Initial configuration

000101

000000 10101

1010100000

C A Q

0
0

0
0

0
0

0
0

0
0

00101
00010

00010
00001

00110
00011

00011
00001

00110
00011

10101
11010

11010
01101

01101
00110

00110
10011

10011
01001

1st cycle

2nd cycle

3rd cycle

4th cycle

5th cycle

0

00101
M

product

0

0

1

1

0

0

0

0

1

Initial configuration

1st cycle

QA

M

A × B :

A / B :

0

0

0

000000
111011
111011

1

1
4th cycle

shift
subtract

0

0 1

1

shift

0

000101addadd

0

0

1

1

0

0
add

110111
000101
111100

000101
000001

5th cycle

quotient

remainder

13

6.15. ARM Program:

Use R0 as the loop counter.

MOV R1,#0
MOV R0,#32

LOOP TST R2,#1 Test LSB of multiplier.
ADDNE R1,R3,R1 Add multiplicand if LSB = 1.
MOV R1,R1,RRX Shift [R1] and [R2] right
MOV R2,R2,RRX one bit position, with [C].
SUBS R0,R0,#1 Check if done.
BGT LOOP

68000 program:

Assume that D2 and D3 contain the multiplier and the multiplicand, respectively.
The high- and low-order halves of the product will be stored in D1 and D2. Use
D0 as the loop counter.

CLR.L D1
MOVE.B #31,D0

LOOP ANDI.W #1,D2 Test LSB of multiplier.
BEQ NOADD
ADD.L D3,D1 Add multiplicand if LSB = 1.

NOADD ROXR.L #1,D1 Shift [D1] and [D2] right
ROXR.L #1,D2 one bit position, with [C].
DBRA D0,LOOP Check if done.

IA-32 Program:

Use registers EAX, EDX, and EDI, as R1, R2, and R3, respectively, and use
ECX as the loop counter.

MOV EAX,0
MOV ECX,32
SHR EDX,1 Set [CF] = LSB of multiplier.

LOOPSTART: JNC NOADD
ADD EAX,EDI Add multiplicand if LSB = 1.

NOADD: RCR EAX,1 Shift [EAX] and [EDX] right
RCR EDX,1 one bit position, with [CF].
LOOP LOOPSTART Check if done.

14

6.16. ARM Program:

Use the register assignment R1, R2, and R0, for the dividend, divisor, and re-
mainder, respectively. As computation proceeds, the quotient will be shifted into
R1.

MOV R0,#0 Clear R0.
MOV R3,#32 Initialize counter R3.

LOOP MOVS R1,R1,LSL #1 Two-register left
ADCS R0,R0,R0 shift of R0 and R1

by one position.
SUBCCS R0,R0,R2 Implement step 1
ADDCSS R0,R0,R2 of the algorithm.
ORRPL R1,R1,#1
SUBS R3,R3,#1 Check if done.
BGT LOOP
TST R0,R0 Implement step 2
ADDMI R0,R2,R0 of the algorithm.

68000 Program:

Assume that D1 and D2 contain the dividend and the divisor, respectively. We
will use D0 to store the remainder. As computation proceeds, the quotient will
be shifted into D1.

CLR D0 Clear D0.
MOVE.B #15,D3 Initialize counter D3.

LOOP ASL #1,D1 Two-register left shift of
ROXL #1,D0 D0 and D1 by one position.
BCS NEGRM Implement step 1
SUB D2,D0 of the algorithm.
BRA SETQ

NEGRM ADD D2,D0
SETQ BMI COUNT

ORI #1,D1
COUNT DBRA D3,LOOP Check if done.

TST D0 Implement step 2
BPL DONE of the algorithm.
ADD D2,D0

DONE . . .

15

IA-32 Program:

Use the register assignment EAX, EBX, and EDX, for the dividend, divisor, and
remainder, respectively. As computation proceeds, the quotient is shifted into
EAX.

MOV EDX,0 Clear EDX.
MOV ECX,32 Initialize counter ECX.

LOOPSTART: SHL EAX,1 Two-register left
RCL EDX,1 shift of EDX and EAX

by one position.
JC NEGRM Implement step 1
SUB EDX,EBX of the algorithm.
JMP SETQ

NEGRM: ADD EDX,EBX
SETQ: JS COUNT

OR EAX,1
COUNT: LOOP LOOPSTART Check if done.

TEST EDX,EDX Implement step 2
JNS DONE of the algorithm.
ADD EDX,EBX

DONE: . . .

16

6.17. The multiplication answers are:

_ _

×

-1 -1

-1

00 0
1111 00

+1

+1

0 11

+1

110

00

111 1 1

1

11121

1 1 1 1 1 2 1

sign
extension

+1

+1

1 1 1 1 1

0 0 01 1 1 1 1 1 1 1 1

0111
0

1 1 1 1 1 1 0 1 10 0
0

111010000
1 1000

0

0 0 1 1 0
0

1

0

01 1 1
0

1 0
0 0

0
110011

111 000

0011 00000000

0000

11
0

01 1

0
1 11 0

1
0

01

1 0
0

0 11100000 00 0

0111111
0 0 0 0 0 1 1

×

×

×

×

×

×

(d)

(c)

(b)

(a) 010111
110110

101100
110011

011011

× ×

×

+23

-230

-297

sign
extension

extension
sign

00

1111
000

0

1 1 1 1 0 0 0 1 1 10 0

1 1

0
0

11111111
1110000 1

1

10000111000

×

0

15
15

225

-13

260

×

-10

-20

001111
001111

110101
27

-11

-1-1

-1

-1

17

6.18. The multiplication answers are:

_ _

-1

-1

1 1 1 2 1 1 1

0 0 0 1

1 1 1 1

1

011011
110101

1
1

01 011
0

10 0 0 0 0 0 0 0 01 1

01

1
10 100000

1011

010111
110110

0 1 0 1

010010111111
0 0 0 0 1 0 1 1 1 0

10010111

010110001111

0
1 0

101100
110011 1 0 1 1

0
0 0 0 0 0 1 1

10
0 0 1

00 0 0 1 1

0000000 11000

11111111 000

×

×

×

×

11

(a)

(b)

(c)

(d)

11
+2

+2

11 11

001111
001111

00
+1

11111111
11110000

10001110000 0

-2

-1-1

-1-1

18

6.19. Both the A and M registers are augmented by one bit to the left to hold a sign
extension bit. The adder is changed to an n + 1-bit adder. A bit is added to the
right end of the Q register to implement the Booth multiplier recoding operation.
It is initially set to zero. The control logic decodes the two bits at the right end of
the Q register according to the Booth algorithm, as shown in the following logic
circuit. The right shift is an arithmetic right shift as indicated by the repetition
of the extended sign bit at the left end of the A register. (The only case that
actually requires the sign extension bit is when the n-bit multiplicand is the value
−2(n−1); for all other operands, the A and M registers could have been n-bit
registers and the adder could have been an n-bit adder.)

qn 1–

mn 1–

n + 1

Multiplicand M

Control
sequencer

Multiplier Q

Shift right (Arithmetic)

Register A (initially 0)

an 1– a0 q0

m0

MUX

Nothing
Add M
Subtract M
Nothing

00
01
10
11

0

mn

Nothing
Add M
Subtract M

O
M
Mbit

adder

~
~
~

ignore

Nothing
Add M

Subtract M

0

1

an

sign
extension

bit

19

6.20 (a)

1110 −2
× 1101 ×− 3

1110 6
0000
1000
0000
0110

(b)

0010 2
× 1110 ×− 2

0000 −4
0100
1000
0000
1100

This technique works correctly for the same reason that modular addition can
be used to implement signed-number addition in the 2’s-complement representa-
tion, because multiplication can be interpreted as a sequence of additions of the
multiplicand to shifted versions of itself.

20

6.21. The four 32-bit subproducts needed to generate the 64-bit product are labeled A,
B, C, and D, and shown in their proper shifted positions in the following figure:

A

R0R1

R2R3

R2 R0

R2R1

R3 R0

R3 R1

R15 R14 R13 R12

B

C

D

X

X

X

X

X

21

The 64-bit product is the sum of A, B, C, and D. Using register transfers and
multiplication and addition operations executed by the arithmetic unit described,
the 64-bit product is generated without using any extra registers by the following
steps:

R12 ← [R0]

R13 ← [R2]

R14 ← [R1]

R15 ← [R3]

R3 ← [R14]

R1 ← [R15]

R13, R12 ← [R13]× [R12]

R15, R14 ← [R15]× [R14]

R3, R2 ← [R3]× [R2]

R1, R0 ← [R1]× [R0]

R13 ← [R2] Add [R13]

R14 ← [R3] Add with carry [R14]

R15 ← 0 Add with carry [R15]

R13 ← [R0] Add [R13]

R14 ← [R1] Add with carry [R14]

R15 ← 0 Add with carry [R15]

This procedure destroys the original contents of the operand registers. Steps 5
and 6 result in swapping the contents of R1 and R3 so that subproducts B and
C can be computed in adjacent register pairs. Steps 11, 12, and 13, add the
subproduct B into the 64-bit product registers; and steps 14, 15, and 16, add the
subproduct C into these registers.

22

6.22. (a) The worst case delay path in Figure 6.16a is along the staircase pattern that
includes the two FA blocks at the right end of each of the first two rows (a total
of four FA block delays), followed by the four FA blocks in the third row. Total
delay is therefore 17 gate delays, including the initial AND gate delay to develop
all bit products.

In Figure 6.16b, the worst case delay path is vertically through the first two rows
(a total of two FA block delays), followed by the four FA blocks in the third row
for a total of 13 gate delays, including the initial AND gate delay to develop all
bit products.

(b) Both arrays are 4× 4 cases.

Note that 17 is the result of applying the expression 6(n− 1)− 1 with n = 4 for
the array in Figure 6.16a.

A similar expression for the Figure 6.16b array is developed as follows. The
delay through (n − 2) carry-save rows of FA blocks is 2(n − 2) gate delays,
followed by 2n gate delays along the n FA blocks of the last row, for a total of

2(n− 2) + 2n + 1 = 4(n− 1) + 1

gate delays, including the initial AND gate delay to develop all bit products. The
answer is thus 13, as computed directly in Part (a), for the 4× 4 case.

6.23. The number of reduction steps n to reduce k summands to 2 is given by k(2/3)n =
2, because each step reduces 3 summands to 2. Then we have:

log2k + n(log22− log23) = log22

log2k = 1 + n(log23− log22)

= 1 + n(1.59− 1)

n =
(log2k)− 1

0.59
= 1.7log2k − 1.7

This answer is only an approximation because the number of summands is not a
multiple of 3 in each reduction step.

23

6.24. (a) Six CSA levels are needed:

1

2

6

5

4

3

(b) Eight CSA levels are needed:

1

2

6

5

4

3

8

7

(c) The approximation gives 5.1 and 6.8 CSA levels, compared to 6 and 8 from
Parts (a) and (b).

24

6.25. (a)

+1.7 0 01111 101101
−0.012 1 01000 100010

+19 0 10011 001100
1/8 0 01100 000000

“Rounding” has been used as the truncation method in these answers.

(b) Other than exact 0 and±infinity, the smallest numbers are±1.000000×2−14

and the largest numbers are ±1.111111× 215.

(c) Assuming sign-and-magnitude format, the smallest and largest integers (other
than 0) are±1 and±(211− 1); and the smallest and largest fractions (other than
0) are ±2−11 and approximately±1.

(d)

A + B = 0 10001 000000

A−B = 0 10001 110110

A×B = 1 10010 001011

A/B = 1 10000 011011

“Rounding” has been used as the truncation method in these answers.

6.26. (a) Shift the mantissa of B right two positions, and tentatively set the exponent
of the sum to 100001. Add mantissas:

(A) 1.11111111000
(B) 0.01001010101

10.01001001101

Shift right one position to put in normalized form: 1.001001001101 and increase
exponent of sum to 100010. Truncate the mantissa to the right of the binary point
to 9 bits by rounding to obtain 001001010. The answer is 0 100010 001001010.

(b)

Largest ≈ 2× 231

Smallest ≈ 1× 2−30

This assumes that the two end values, 63 and 0 in the excess-31 exponent, are
used to represent infinity and exact 0, respectively.

25

6.27. Let A and B be two floating-point numbers. First, assume that SA = SB = 0.
If E

′

A
> E

′

B
, considered as unsigned 8-bit numbers, then A > B. If E

′

A
= E

′

B
,

then A > B if MA > MB. This means that A > B if the 31 bits after the sign
in the representation for A is greater than the 31 bits representing B, when both
are considered as integers. In the logic circuit shown below, all possibilities for
the sum bit are also taken into account. In the circuit, let A = a31a30 . . . a0 and
B = b31b30 . . . b0 be the two floating-point numbers to be compared.

Y = b31b30…b0X = a31a30…a0

b31

a31

X = YX > Y

A = B

A > B

These two outputs give the floating-point comparison.
If neither of these outputs is 1, then A < B.

32-bit unsigned
integer comparator

6.28. Convert the given decimal mantissa into a binary floating-point number by using
the integer facilities in the computer to implement the conversion algorithms in
Appendix E. This will yield a floating-point number fi. Then, using the com-
puter’s floating-point facilities, compute fi × ti, as required.

6.29. (0.1)10 ⇒ (0.00011001100...)

The signed, 8-bit approximations to this decimal number are:

Chopping: (0.1)10 = (0.0001100)2
Von Neumann Rounding: (0.1)10 = (0.0001101)2
Rounding: (0.1)10 = (0.0001101)2

26

6.30. Consider A − B, where A and B are 6-bit (normalized) mantissas of floating-
point numbers. Because of differences in exponents, B must be shifted 6 posi-
tions before subtraction.

A = 0.100000

B = 0.100001

After shifting, we have:

A = 0.100000 000
−B = 0.000000 101 ←− sticky bit

0.011111 011
normalize 0.111110 110

round 0.111111 ←− correct answer (rounded)

With only 2 guard bits, we would have had:

A = 0.100000 00
−B = 0.000000 11

0.011111 01
normalize 0.111110 10

round 0.111110

6.31. The binary versions of the decimal fractions −0.123 and −0.1 are not exact.
Using 3 guard bits, with the last bit being the sticky bit, the fractions 0.123 and
0.1 are represented as:

0.123 = 0.00011 111

0.1 = 0.00011 001

The three representations for both fractions using each of the three truncation
methods are:

Chop Von Neumann Round

−0.123: Sign-and-magnitude 1.00011 1.00011 1.00100
1’s-complement 1.11100 1.11100 1.11011
2’s-complement 1.11101 1.11101 1.11100

−0.1: Sign-and-magnitude 1.00011 1.00011 1.00011
1’s-complement 1.11100 1.11100 1.11100
2’s-complement 1.11101 1.11101 1.11101

27

6.32. The relevant truth table and logic equations are:

_ _

SB 8sSB 8s

25s = 1

11 00

(25s)

ADD(0)/
SUBTRACT(1)
(AS)

1

1

0

0
1

0

1

0

0

1

0

1

0

0

1

1

0
1

1

1

0

0

1

0

1

0

1

0
1

1

0

sign from

subtractor
25-bit adder/

0

1

1

1

1

0 0 0

0

0
0 1 0

0

1 0 0

0

0
1 1 0

determine ADD/SUB
these variables

1 1 1
0

101

0

0 1 1

0 0 1

SA SB sign from

0

SA SB

0

0

0

01

1

1

10

1

00 1 1

0 0

0 0

0 0

0 0

0

0

d d

d d d d

dddd

d d

1 1

1 1

1 1

1 1

1

1

000 0 01 11 1

00

0

0

1

11

1

00

0

11

1

01

00 10 11 10
AS SA AS SA

25s = 0

1

1

1

1

ADD/SUB = AS ⊕ SA ⊕ SB

ADD(0) /
SUBTRACT(1)
(AS)

0 d

d

0

1
d

1
1

d

1

1

1 1

0

d

0

1

d

0 d

0
1 0

d

d

1

1

d0

1

d

0

0 d

0
0

1 1

0

SR

0

ADD/
SUB

subtractor
8-bit

SR = 25s S
�

A + 25
���

s SA 8
�

s + AS S
�

B 8s + AS
� ���

SB 8s

(8s)

28

6.33. The largest that n can be is 253 for normal values. The mantissas, including
the leading bit of 1, are 24 bits long. Therefore, the output of the SHIFTER
can be non-zero for n ≤ 23 only, ignoring guard bit considerations. Let n =
n7n6 . . . n0, and define an enable signal, EN, as EN = n7n6n5. This vari-
able must be 1 for any output of the SHIFTER to be non-zero. Let m =
m23m22 . . .m0 and s23s22 . . . s0 be the SHIFTER inputs and outputs, respec-
tively. The largest network is required for output s0, because any of the 24 input
bits could be shifted into this output position. Define an intermediate binary vec-
tor i = i23i22 . . . i0. We will first shift m into i based on EN and n4n3. (Then
we will shift i into s, based on n2n1n0.) Only the part of i needed to generate s0

will be specified.

i7 = ENn4n3m23 + ENn4n3m15 + ENn4n3m7

i6 = (. . .)m22 + (. . .)m14 + (. . .)m6

i5 = (. . .)m21 + (. . .)m13 + (. . .)m5

.

.

.

i0 = (. . .)m16 + (. . .)m8 + (. . .)m0

Gates with fan-in up to only 4 are needed to generate these 8 signals. Note that
all bits of m are involved, as claimed. We now generate s0 from these signals
and n2n1n0 as follows:

s0 = n2n1n0i7 + n2n1n0i6 + n2n1n0i5 + n2n1n0i4

+n2n1n0i3 + n2n1n0i2 + n2n1n0i1 + n2n1n0i0

Note that this requires a fan-in of 8 in the OR gate, so that 3 gates will be needed.
Other si positions can be generated in a similar way.

29

6.34. (a)

E´A0E´A6E´A7E´B0E´B6E´B7

Sign

E´0E´6E´7

(b) The SWAP network is a pair of multiplexers, each one similar to (a).

6.35. Let m = m24m23 . . . m0 be the output of the adder/subtractor. The leftmost bit,
m24, is the overflow bit that could result from addition. (We ignore the handling
of guard bits.) Derive a series of variables, zi, as follows:

z
−1 = m24

z0 = m24m23

z1 = m24m23m22

.

.

.

z23 = m24m23 . . .m0

z24 = m24m23 . . .m0

Note that exactly one of the zi variables is equal to 1 for any particular m vector.
Then encode these zi variables, for −1 ≤ i ≤ 23, into a 6-bit signal representa-
tion for X , so that if zi = 1, then X = i. The variable z24 signifies whether or
not the resulting mantissa is zero.

30

6.36. Augment the 24-bit operand magnitudes entering the adder/subtractor by adding
a sign bit position at the left end. Subtraction is then achieved by complement-
ing the bottom operand and performing addition. Group corresponding bit-pairs
from the two, signed, 25-bit operands into six groups of four bit-pairs each, plus
one bit-pair at the left end, for purposes of deriving Pi and Gi functions. La-
bel these functions P6, G6, . . ., P0, G0, from left-to-right, following the pattern
developed in Section 6.2.

The lookahead logic must generate the group input carries c0, c4, c8, . . . , c24,
accounting properly for the “end-around carry”. The key fact is that a carry ci

may have the value 1 because of a generate condition (i.e., some Gi = 1) in a
higher-order group as well as in a lower-order group. This observation leads to
the following logic expressions for the carries:

c0 = G6 + P6G5 + . . . + P6P5P4P3P2P1G0

c4 = G0 + P0G6 + P0P6G5 + . . . + P0P6P5P4P3P2G1

.

.

.

Since the output of this adder is in 1’s-complement form, the sign bit determines
whether or not to complement the remaining bits in order to send the magnitude
M on to the “Normalize and Round” operation. Addition of positive numbers
leading to overflow is a valid result, as discussed in Section 6.7.4, and must
be distinguished from a negative result that may occur when subtraction is per-
formed. Some logic at the left-end sign position solves this problem.

31

