
Chapter 5 – The Memory System

5.1. The block diagram is essentially the same as in Figure 5.10, except that 16 rows
(of four 512 × 8 chips) are needed. Address lines A18−0 are connected to all
chips. Address lines A22−19 are connected to a 4-bit decoder to select one of the
16 rows.

5.2. The minimum refresh rate is given by

50× 10−15
× (4.5− 3)

9× 10−12
= 8.33× 10−3 s

Therefore, each row has to be refreshed every 8 ms.

5.3. Need control signals Min and Mout to control storing of data into the memory
cells and to gate the data read from the memory onto the bus, respectively. A
possible circuit is

D Q D Q

ClkClkDin Mout
Dout

Min

Data

Read/Write
circuits and latches

5.4. (a) It takes 5 + 8 = 13 clock cycles.

Total time =
13

(133× 106)
= 0.098× 10−6 s = 98 ns

Latency =
5

(133× 106)
= 0.038× 10−6 s = 38 ns

(b) It takes twice as long to transfer 64 bytes, because two independent 32-byte
transfers have to be made. The latency is the same, i.e. 38 ns.

1



5.5. A faster processor chip will result in increased performance, but the amount
of increase will not be directly proportional to the increase in processor speed,
because the cache miss penalty will remain the same if the main memory speed
is not improved.

5.6. (a) Main memory address length is 16 bits. TAG field is 6 bits. BLOCK field is
3 bits (8 blocks). WORD field is 7 bits (128 words per block).

(b) The program words are mapped on the cache blocks as follows:

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

0 1024

127 1151

128 1152

255 1279

256 1280

383 1407

384 1408

511 1535

512

639

640

767

768

895

896

1023

Start

17

23

165

239

1200

1500

End

Hence, the sequence of reads from the main memory blocks into cache blocks is

Block : 0, 1, 2, 3, 4, 5, 6, 7, 0, 1,
︸ ︷︷ ︸

Pass 1

0, 1, 0, 1,
︸ ︷︷ ︸

Pass 2

0, 1, . . . , 0, 1, 0, 1, 0, 1,
︸ ︷︷ ︸

Pass 9

0, 1, 0, 1, 2, 3
︸ ︷︷ ︸

Pass 10

2



As this sequence shows, both the beginning and the end of the outer loop use
blocks 0 and 1 in the cache. They overwrite each other on each pass through the
loop. Blocks 2 to 7 remain resident in the cache until the outer loop is completed.

The total time for reading the blocks from the main memory into the cache is
therefore

(10 + 4× 9 + 2)× 128× 10 τ = 61, 440 τ

Executing the program out of the cache:

Outer loop− inner loop = [(1200− 22)− (239− 164)]10× 1τ = 11, 030 τ

Inner loop = (239− 164)200× 1 τ = 15, 000 τ

End section of program = 1500− 1200 = 300× 1 τ

Total execution time = 87, 770 τ

5.7. In the first pass through the loop, the Add instruction is stored at address 4 in
the cache, and its operand (A03C) at address 6. Then the operand is overwritten
by the Decrement instruction. The BNE instruction is stored at address 0. In the
second pass, the value 05D9 overwrites the BNE instruction, then BNE is read
from the main memory and again stored in location 0. The contents of the cache,
the number of words read from the main memory and from the cache, and the
execution time for each pass are as shown below.

005E BNE

005D

005D

Add

Dec

005E BNE

005D

005D

Add

Dec

005E BNE

005D

005D

Add

Dec

00AA 10D7

Cache contents MM accesses Cache accesses TimeAfter pass No.

1

2

4

2

1

0

2

3

40 τ

τ

τ

τ

22

13

Total 5 75

3

7

3



5.8. All three instructions are stored in the cache after the first pass, and they re-
main in place during subsequent passes. In this case, there is a total of 6 read
operations from the main memory and 6 from the cache. Execution time is 66 τ .

Instructions and data are best stored in separate caches to avoid the data over-
writing instructions, as in Problem 5.7.

5.9. (a) 4096 blocks of 128 words each require 12+7 = 19 bits for the main memory
address.

(b) TAG field is 8 bits. SET field is 4 bits. WORD field is 7 bits.

5.10. (a) TAG field is 10 bits. SET field is 4 bits. WORD field is 6 bits.

(b) Words 0, 1, 2, · · ·, 4351 occupy blocks 0 to 67 in the main memory (MM).
After blocks 0, 1, 2, · · ·, 63 have been read from MM into the cache on the first
pass, the cache is full. Because of the fact that the replacement algorithm is
LRU, MM blocks that occupy the first four sets of the 16 cache sets are always
overwritten before they can be used on a successive pass. In particular, MM
blocks 0, 16, 32, 48, and 64 continually displace each other in competing for
the 4 block positions in cache set 0. The same thing occurs in cache set 1 (MM
blocks, 1, 17, 33, 49, 65), cache set 2 (MM blocks 2, 18, 34, 50, 66) and cache
set 3 (MM blocks 3, 19, 35, 51, 67). MM blocks that occupy the last 12 sets
(sets 4 through 15) are fetched once on the first pass and remain in the cache for
the next 9 passes. On the first pass, all 68 blocks of the loop must be fetched
from the MM. On each of the 9 successive passes, blocks in the last 12 sets of
the cache (4× 12 = 48) are found in the cache, and the remaining 20 (68− 48)
blocks must be fetched from the MM.

Improvement factor =
Time without cache

Time with cache

=
10× 68× 10τ

1× 68× 11τ + 9(20× 11τ + 48× 1τ)

= 2.15

5.11. This replacement algorithm is actually better on this particular ”large” loop ex-
ample. After the cache has been filled by the main memory blocks 0, 1, · · ·, 63
on the first pass, block 64 replaces block 48 in set 0. On the second pass, block
48 replaces block 32 in set 0. On the third pass, block 32 replaces block 16, and
on the fourth pass, block 16 replaces block 0. On the fourth pass, there are two
replacements: 0 kicks out 64, and 64 kicks out 48. On the sixth, seventh, and
eighth passes, there is only one replacement in set 0. On the ninth pass there are
two replacements in set 0, and on the final pass there is one replacement. The
situation is similar in sets 1, 2, and 3. Again, there is no contention in sets 4
through 15. In total, there are 11 replacements in set 0 in passes 2 through 10.
The same is true in sets 1, 2, and 3. Therefore, the improvement factor is

10× 68× 10τ

1× 68× 11τ + 4× 11× 11τ + (9× 68− 44)× 1τ
= 3.8

4



5.12. For the first loop, the contents of the cache are as indicated in Figures 5.20
through 5.22. For the second loop, they are as follows.

(a) Direct-mapped cache

_ _

Contents of data cache after pass:

j = 9 i = 1 i = 3 i = 5 i = 7 i = 9
Block

position

0

1

2

3

4

5

6

7

A(0,8)

A(0,9)

A(0,0)

A(0,1)

A(0,2) A(0,4) A(0,6) A(0,8)

A(0,3) A(0,5) A(0,7) A(0,9)

(b) Associative-mapped cache

_ _

A(0,9)

A(0,8)

A(0,7)

A(0,6)

A(0,2)

A(0,3)

A(0,4)

A(0,5)A(0,7) A(0,5)

A(0,4)

A(0,3)

A(0,2)

A(0,1)

A(0,0)

A(0,9)

A(0,8)

A(0,6)

A(0,5)

A(0,4)

A(0,3)

A(0,9)

A(0,8)

Contents of data cache after pass:

i = 9i = 5i = 0j = 9
Block

position

0

A(0,0)

A(0,7)

A(0,6)

A(0,5)

A(0,4)

A(0,3)

A(0,9)

A(0,8)

1

2

3

4

5

6

7

A(0,2)

5



(c) Set-associative-mapped cache

_ _

Set 0

Set 1

A(0,5)

A(0,4)

A(0,7)

A(0,6)

A(0,1)

A(0,3)

A(0,2)

A(0,7)

A(0,6)

i = 7i = 3

3

2

1

0

A(0,9)

A(0,8)

A(0,7)

A(0,6)

A(0,9)

A(0,8)

Contents of data cache after pass:

i = 9j = 9
Block

position

0

A(0,0)

1

2

3

In all 3 cases, all elements are overwritten before they are used in the second
loop. This suggests that the LRU algorithm may not lead to good performance if
used with arrays that do not fit into the cache. The performance can be improved
by introducing some randomness in the replacement algorithm.

5.13. The two least-significant bits of an address, A1−0, specify a byte within a 32-bit
word. For a direct-mapped cache, bits A4−2 specify the block position. For a
set-associative-mapped cache, bit A2 specifies the set.

(a) Direct-mapped cache

_ _

Pass 4Pass 3Pass 2Pass 1

7

6

5

4

3

2

1

0

position
Block

Contents of data cache after:

[200]

[204]

[208]

[24C]

[2F0]

[2F4]

[218]

[21C] [21C]

[218]

[2F4]

[2F0]

[24C]

[208]

[204]

[200] [200]

[204]

[208]

[24C]

[2F0]

[2F4]

[218]

[21C][21C]

[218]

[2F4]

[2F0]

[24C]

[208]

[204]

[200]

Hit rate = 33/48 = 0.69

6



(b) Associative-mapped cache

_ _

[200]

[204] [204]

[200][200]

[204]

[24C]

[21C]

[218]

[204]

[200]

Contents of data cache after:

Block
position

0

1

2

3

4

5

6

7

Pass 1 Pass 2 Pass 3 Pass 4

[24C]

[20C]

[2F4]

[2F0]

[21C]

[2F4] [2F4] [2F4]

[20C]

[2F0]

[218]

[218]

[21C]

[24C]

[20C]

[2F0]

[2F0]

[218]

[21C]

[24C]

[20C]

Hit rate = 21/48 = 0.44

(c) Set-associative-mapped cache

_ _

Hit rate = 30/48 = 0.63

2
Set 1

3

1

0

Pass 4Pass 3Pass 2Pass 1

3

2

1

0

position
Block

Contents of data cache after:

[2F4]

[24C]

[204]

[218]

[2F0]

[208]

[200]

[21C]

[200]

[208]

[2F0]

[218]

[204]

[2F4] [2F4]

[204]

[218]

[2F0]

[208]

[200]

[21C]

[200]

[208]

[2F0]

[218]

[204]

[24C]

[2F4]

[21C] [21C]

[24C] [24C]

Set 0

7



5.14. The two least-significant bits of an address, A1−0, specify a byte within a 32-bit
word. For a direct-mapped cache, bits A4−3 specify the block position. For a
set-associative-mapped cache, bit A3 specifies the set.

(a) Direct-mapped cache

_ _

Pass 4Pass 3Pass 2Pass 1
position
Block

Contents of data cache after:

[200]

[204]

[24C]

[2F0]

[2F4]

[218]

[21C] [21C]

[218]

[2F4]

[2F0]

[24C]

[204]

[200] [200]

[204]

[24C]

[2F0]

[2F4]

[218]

[21C][21C]

[218]

[2F4]

[2F0]

[24C]

[204]

[200]
0

1

2

3

[248] [248] [248] [248]

Hit rate = 37/48 = 0.77

(b) Associative-mapped cache

_ _

[248][248]

3

2

1

0
[200]

[204]

[24C]

[2F0]

[2F4]

[218]

[21C]

[2F4]

[2F0]

[204]

[200][200]

[204]

[2F0]

[2F4]

[21C]

[218]

[2F4]

[2F0]

[24C]

[204]

[200]

Contents of data cache after:

Block
position

Pass 1 Pass 2 Pass 3 Pass 4

[218]

[21C]

[248]

[24C]

[218]

[21C]

[248]

[24C]

Hit rate = 34/48 = 0.71

8



(c) Set-associative-mapped cache

_ _

[204][204][204][204]

[248][218][248][218]

[218][248][218][248]

[2F4][2F4][2F4][2F4]
1

1

0

0

Set 1

Set 0

[24C][24C]

[21C][21C] [24C]

[2F0]

[200]

[21C]

[200]

[2F0][2F0]

[200]

[21C]

[200]

[2F0]

[24C]

Contents of data cache after:

Block
position

Pass 1 Pass 2 Pass 3 Pass 4

Hit rate = 34/48 = 0.71

5.15. The block size (number of words in a block) of the cache should be at least
as large as 2k, in order to take full advantage of the multiple module memory
when transferring a block between the cache and the main memory. Power of 2
multiples of 2k work just as efficiently, and are natural because block size is 2k

for k bits in the ”word” field.

5.16. Larger size

• fewer misses if most of the data in the block are actually used

• wasteful if much of the data are not used before the cache block is ejected
from the cache

Smaller size

• more misses

5.17. For 16-word blocks the value of M is 1 + 8 + 3× 4 + 4 = 25 cycles. Then

Time without cache

Time with cache
= 4.04

In order to compare the 8-word and 16-word blocks, we can assume that two
8-word blocks must be brought into the cache for each 16-word block. Hence,
the effective value of M is 2× 17 = 34. Then

Time without cache

Time with cache
= 3.3

9



Similarly, for 4-word blocks the effective value of M is 4(1+8+4) = 52 cycles.
Then

Time without cache

Time with cache
= 2.42

Clearly, interleaving is more effective if larger cache blocks are used.

5.18. The hit rates are

h1 = h2 = h = 0.95 for instructions

= 0.90 for data

The average access time is computed as

tave = hC1 + (1− h)hC2 + (1− h)
2
M

(a) With interleaving M = 17. Then

tave = 0.95× 1 + 0.05× 0.95× 10 + 0.0025× 17 + 0.3(0.9× 1 + 0.1× 0.9× 10 + 0.01× 17)

= 2.0585 cycles

(b) Without interleaving M = 38. Then tave = 2.174 cycles.

(c) Without interleaving the average access takes 2.174/2.0585 = 1.056 times
longer.

5.19. Suppose that it takes one clock cycle to send the address to the L2 cache, one
cycle to access each word in the block, and one cycle to transfer a word from the
L2 cache to the L1 cache. This leads to C2 = 6 cycles.

(a) With interleaving M = 1 + 8 + 4 = 13. Then tave = 1.79 cycles.

(b) Without interleaving M = 1+8+3× 4+1 = 22. Then tave = 1.86 cycles.

(c) Without interleaving the average access takes 1.86/1.79 = 1.039 times
longer.

5.20. The analogy is good with respect to:

• relative sizes of toolbox, truck and shop versus L1 cache, L2 cache and
main memory

• relative access times

• relative frequency of use of tools in the 3 storage places versus the data
accesses in caches and the main memory

The analogy fails with respect to the facts that:

• at the start of a working day the tools placed into the truck and the toolbox
are preselected based on the experience gained on previous jobs, while in
the case of a new program that is run on a computer there is no relevant
data loaded into the caches before execution begins

10



• most of the tools in the toolbox and the truck are useful in successive jobs,
while the data left in a cache by one program are not useful for the subse-
quent programs

• tools displaced by the need to use other tools are never thrown away, while
data in the cache blocks are simply overwritten if the blocks are not flagged
as dirty

5.21. Each 32-bit number comprises 4 bytes. Hence, each page holds 1024 numbers.
There is space for 256 pages in the 1M-byte portion of the main memory that is
allocated for storing data during the computation.

(a) Each column is one page; there will be 1024 page faults.

(b) Processing of entire columns, one at a time, would be very inefficient and
slow. However, if only one quarter of each column (for all columns) is processed
before the next quarter is brought in from the disk, then each element of the array
must be loaded into the memory twice. In this case, the number of page faults
would be 2048.

(c) Assuming that the computation time needed to normalize the numbers is
negligible compared to the time needed to bring a page from the disk:

Total time for (a) is 1024× 40 ms = 41 s

Total time for (b) is 2048× 40 ms = 82 s

5.22. The operating system may increase the main memory pages allocated to a pro-
gram that has a large number of page faults, using space previously allocated to
a program with a few page faults.

5.23. Continuing the execution of an instruction interrupted by a page fault requires
saving the entire state of the processor, which includes saving all registers that
may have been affected by the instruction as well as the control information that
indicates how far the execution has progressed. The alternative of re-executing
the instruction from the beginning requires a capability to reverse any changes
that may have been caused by the partial execution of the instruction.

5.24. The problem is that a page fault may occur during intermediate steps in the exe-
cution of a single instruction. The page containing the referenced location must
be transferred from the disk into the main memory before execution can proceed.
Since the time needed for the page transfer (a disk operation) is very long, as
compared to instruction execution time, a context-switch will usually be made.
(A context-switch consists of preserving the state of the currently executing pro-
gram, and ”switching” the processor to the execution of another program that is
resident in the main memory.) The page transfer, via DMA, takes place while
this other program executes. When the page transfer is complete, the original
program can be resumed.

Therefore, one of two features are needed in a system where the execution of
an individual instruction may be suspended by a page fault. The first possibility

11



is to save the state of instruction execution. This involves saving more infor-
mation (temporary programmer-transparent registers, etc.) than needed when a
program is interrupted between instructions. The second possibility is to ”un-
wind” the effects of the portion of the instruction completed when the page fault
occurred, and then execute the instruction from the beginning when the program
is resumed.

5.25. (a) The maximum number of bytes that can be stored on this disk is 24×14000×
400× 512 = 68.8× 109 bytes.

(b) The data transfer rate is (400× 512× 7200)/60 = 24.58× 106 bytes/s.

(c) Need 9 bits to identify a sector, 14 bits for a track, and 5 bits for a surface.
Thus, a possible scheme is to use address bits A8−0 for sector, A22−9 for track,
and A27−23 for surface identification. Bits A31−28 are not used.

5.26. The average seek time and rotational delay are 6 and 3 ms, respectively. The
average data transfer rate from a track to the data buffer in the disk controller is
34 Mbytes/s. Hence, it takes 8K/34M = 0.23 ms to transfer a block of data.

(a) The total time needed to access each block is 9 + 0.23 = 9.23 ms. The
portion of time occupied by seek and rotational delay is 9/9.23 = 0.97 = 97%.

(b) Only rotational delays are involved in 90% of the cases. Therefore, the aver-
age time to access a block is 0.9× 3 + 0.1× 9 + 0.23 = 3.89 ms. The portion
of time occupied by seek and rotational delay is 3.6/3.89 = 0.92 = 92%.

5.27. (a) The rate of transfer to or from any one disk is 30 megabytes per second.
Maximum memory transfer rate is 4/(10× 10−9) = 400× 106 bytes/s, which is
400 megabytes per second. Therefore, 13 disks can be simultaneously flowing
data to/from the main memory.

(b) 8K/30M = 0.27 ms is needed to transfer 8K bytes to/from the disk. Seek and
rotational delays are 6 ms and 3 ms, respectively. Therefore, 8K/4 = 2K words
are transferred in 9.27 ms. But in 9.27 ms there are (9.27 × 10−3)/(0.01 ×
10−6) = 927 × 103 memory (word) cycles available. Therefore, over a long
period of time, any one disk steals only (2/927) × 100 = 0.2% of available
memory cycles.

5.28. The sector size should influence the choice of page size, because the sector is the
smallest directly addressable block of data on the disk that is read or written as a
unit. Therefore, pages should be some small integral number of sectors in size.

5.29. The next record, j, to be accessed after a forward read of record i has just been
completed might be in the forward direction, with probability 0.5 (4 records
distance to the beginning of j), or might be in the backward direction with prob-
ability 0.5 (6 records distance to the beginning of j plus 2 direction reversals).

Time to scan over one record and an interrecord gap is

1

800

s

cm
×

1

2000

cm

bit
× 4000 bits× 1000 ms + 3 = 2.5 + 3 = 5.5 ms

12



Therefore, average access and read time is

0.5(4× 5.5) + 0.5(6× 5.5 + 2× 225) + 5.5 = 258 ms

If records can be read while moving in both directions, average access and read
time is

0.5(4× 5.5) + 0.5(5× 5.5 + 225) + 5.5 = 142.75 ms

Therefore, the average percentage gain is (258− 142.75)/258× 100 = 44.7%
The major gain is because the records being read are relatively close together,
and one less direction reversal is needed.

13


