
Chapter 3

ARM, Motorola, and Intel
Instruction Sets

PART I: ARM

3.1. (a) R8, R9, and R10, contain 1, 2, and 3, respectively.

(b) The values 20 and 30 are pushed onto a stack pointed to by R1 by the
two Store instructions, and they occupy memory locations 1996 and 1992,
respectively. They are then popped off the stack into R8 and R9. Finally,
the Subtract instruction results in 10 (30 − 20) being stored in R10. The
stack pointer R1 is returned to its original value of 2000.

(c) The numbers in memory locations 1016 and 1020 are loaded into R4
and R5, respectively. These two numbers are then added and the sum is
placed in register R4. The final address value in R2 is 1024.

3.2. (b) A memory operand cannot be referenced in a Subtract instruction.

(d) The immediate value 257 is 100000001 in binary, and is thus too long
to fit in the 8-bit immediate field. Note that it cannot be generated by
the rotation of any 8-bit value.

3.3. The following two instructions perform the desired operation:

MOV R0,R0,LSL #24

MOV R0,R0,ASR #24

3.4. Use register R0 as a counter register and R1 as a work register.

MOV R0,#32 Load R0 with count value 32.
MOV R1,#0 Clear register R1 to zero.

LOOP MOV R2,R2,LSL #1 Shift contents of R2 left
one bit position, moving the
high-order bit into the C flag.

MOV R1,R1,RRX Rotate R1 right one bit
position, including the C flag,
as shown in Figure 2.32d.

SUBS R0,R0,#1 Check if finished.
BGT LOOP
MOV R2,R1 Load reversed pattern

back into R2.

1

3.5. Program trace:

TIME R0 R1 R2
after 1st execution of BGT 3 4 NUM1 + 4
after 2nd execution of BGT −14 3 NUM1 + 8
after 3rd execution of BGT 13 2 NUM1 + 12

3.6. Assume bytes are unsigned 8-bit values.

LDR R0,N R0 is list counter
ADR R1,X R1 points to X list
ADR R2,Y R2 points to Y list
ADR R3,LARGER R3 points to LARGER list

LOOP LDRB R4,[R1],#1 Load X list byte into R4
LDRB R5,[R2],#1 Load Y list byte into R5
CMP R4,R5 Compare bytes
STRHSB R4,[R3],#1 Store X byte if larger or same
STRLOB R5,[R3],#1 Store Y byte if larger
SUBS R0,R0,#1 Check if finished
BGT LOOP

3.7. The inner loop checks for a match at each possible position.

LDR R0,N Compute outer loop count
LDR R1,M and store in R2.
SUB R2,R0,R1
ADD R2,R2,#1
ADR R3,STRING Use R3 and R4 as base
ADR R4,SUBSTRING pointers for each match.

OUTER MOV R5,R3 Use R5 and R6 as running
MOV R6,R4 pointers for each match.
LDR R7,M Initialize inner loop counter.

INNER LDRB R0,[R5],#1 Compare bytes.
LDRB R1,[R6],#1
CMP R0,R1
BNE NOMATCH If not equal, go next.
SUBS R7,R7,#1 Check if all bytes compared.
BGT INNER
MOV R0,R3 If substring matches, load
B NEXT its position into R0 and exit.

NOMATCH ADD R3,R3,#1 Go to next substring.
SUBS R2,R2,#1 Check if all positions tried.
BGT OUTER
MOV R0,#0 If yes, load zero into

NEXT . . . R0 and exit.

2

3.8. This solution assumes that the last number in the series of n numbers can
be represented in a 32-bit word, and that n > 2.

MOV R0,N Use R0 to count numbers
SUB R0,R0,#2 generated after 1.
ADR R1,MEMLOC Use R1 as memory pointer.
MOV R2,#0 Store first two numbers,
STR R2,[R1],#4 0 and 1, from R2
MOV R3,#1 and R3 into memory.
STR R3,[R1],#4

LOOP ADD R3,R2,R3 Starting with number i− 1
STR R3,[R1],#4 in R2 and i in R3, compute

and place i + 1 in R3
and store in memory.

SUB R2,R3,R2 Recover old i and place
in R2.

SUBS R0,R0,#1 Check if all numbers
BGT LOOP have been computed.

3.9. Let R0 point to the ASCII word beginning at location WORD. To change
to uppercase, we need to change bit b5 from 1 to 0.

NEXT LDRB R1,[R0] Get character.
CMP #&20,R1 Check if space character.
ANDNE #&DF,R1 If not space: clear
STRNEB R1,[R0],#1 bit 5, store
BNE NEXT converted character,

get next character.

3

3.10. Memory word location J contains the number of tests, j, and memory word
location N contains the number of students, n. The list of student marks
begins at memory word location LIST in the format shown in Figure 2.14.
The parameter Stride = 4(j + 1) is the distance in bytes between scores
on a particular test for adjacent students in the list.

The Post-indexed addressing mode [R2],R3,LSL #2 is used to access the
successive scores on a particular test in the inner loop. The value in
register R2 before each entry to the inner loop is the address of the score
on a particular test for the first student. Register R3 contains the value
j + 1. Therefore, register R2 is incremented by the Stride parameter on
each pass through the inner loop.

LDR R3,J Load j + 1 into R3 to
ADD R3,R3,#1 be used as an address offset.
ADR R4,SUM Initialize R4 to the sum

location for test 1.
ADR R5,LIST Load address of test 1 score
ADD R5,R5,#4 for student 1 into R5.
LDR R6,J Initialize outer loop counter

R6 to j.
OUTER LDR R7,N Initialize inner loop

counter R7 to n.
MOV R2,R5 Initialize base register R2

to location of student 1 test
score for next inner loop
sum computation.

MOV R0,#0 Clear sum accumulator
register R0.

INNER LDR R1,[R2],R3,LSL #2 Load test score into R1
and increment R2 by Stride to
point to next test score.

ADD R0,R0,R1 Accumulate score into R0.
SUBS R7,R7,#1 Check if all student scores
BGT INNER for current test are added.
STR R0,[R4],#4 Store sum in memory.
ADD R5,R5,#4 Increment R5 to next test

score for student 1.
SUBS R6,R6,#1 Check if sums for all test
BGT OUTER scores have been accumulated.

4

3.11. Assume that the subroutine can change the contents of any registers used
to pass parameters.

STR R5,[R13,#4]! Save [R5] on stack.
ADD R1,R0,R1,LSL #2 Load address of A(0,x) into R1.
ADD R2,R0,R2,LSL #2 Load address of A(0,y) into R2.

LOOP LDR R5,[R1],R4,LSL #2 Load [A(i,x)] into R5
and increment pointer R1
by Stride = 4m.

LDR R0,[R2] Load [A(i,y)] into R0.
ADD R0,R0,R5 Add corresponding column entries.
STR R0,[R2],R4,LSL #2 Store sum in A(i,y) and

increment pointer R2 by Stride.
SUBS R3,R3,#1 Repeat loop until all
BGT LOOP entries have been added.
LDR R5,[R13],#4 Restore [R5] from stack.
MOV R15,R14 Return.

3.12. This program is similar to Figure 3.9, and makes the same assumptions
about register usage and status word bit locations.

LDR R0,N Use R0 as the loop counter
for reading n characters.

READ LDR R3,[R1] Load [INSTATUS] and
TST R3,#8 wait for character.
BEQ READ
LDRB R3,[R1,#4] Read character and push
STRB R3,[R6,#−1]! onto stack.

ECHO LDR R4,[R2] Load [OUTSTATUS] and
TST R4,#8 wait for display.
BEQ ECHO
STRB R3,[R2,#4] Send character

to display.
SUBS R0,R0,#1 Repeat until n
BGT READ characters read.

3.13. Assume that most of the time between successive characters being struck
is spent in the three-instruction wait loop that starts at location READ.
The BEQ READ instruction is executed once every 60 ns while
this loop is being executed. There are 109/10 = 108 ns between succes-
sive characters. Therefore, the BEQ READ instruction is executed
108/60 = 1.6666× 106 times per character entered.

5

3.14. Main Program

READLINE BL GETCHAR Call character read subroutine.
STRB R3,[R0],#1 Store character in memory.
BL PUTCHAR Call character display subroutine.
TEQ R3,#CR Check for end-of-line character.
BNE READLINE

Subroutine GETCHAR

GETCHAR LDR R3,[R1] Wait for character.
TST R3,#8
BEQ GETCHAR
LDRB R3,[R1,#4] Load character into R3.
MOV R15,R14 Return.

Subroutine PUTCHAR

PUTCHAR STMFD R13!,{R4,R14} Save R4 and Link register.
DISPLAY LDR R4,[R2] Wait for display.

TST R4,#8
BEQ DISPLAY
STRB R3,[R2,#4] Send character to display.
LDMFD R13!,{R4,R15} Restore R4 and Return.

6

3.15. Address INSTATUS is passed to GETCHAR on the stack; the character
read is passed back in the same stack position. The character to be dis-
played and the address OUTSTATUS are passed to PUTCHAR on the
stack in that order. The stack frame structure shown in Figure 3.13 is
used.

Main Program

READLINE LDR R1,POINTER1 Load address INSTATUS
STR R1,[SP,#−4]! contained in POINTER1 into

R1 and push onto stack.
BL GETCHAR Call character read subroutine.
LDRB R1,[SP] Load character from top of
STRB R1,[R0],#1 stack and store in memory.
LDR R2,POINTER2 Load address OUTSTATUS
STR R2,[SP,#−4]! contained in POINTER2 into

R2 and push onto stack.
BL PUTCHAR Call character display subroutine.
ADD SP,SP,#8 Remove parameters from stack.
TEQ R1,#CR Check for end-of-line character.
BNE READLINE

Subroutine GETCHAR

GETCHAR STMFD SP!,{R1,R3,FP,LR} Save registers.
ADD FP,SP,#8 Load frame pointer.
LDR R1[FP,#8] Load address INSTATUS into R1.

READ LDR R3,[R1] Wait for character.
TST R3,#8
BEQ READ
LDRB R3,[R1,#4] Load character into R3
STRB R3,[FP,#8] and overwrite INSTATUS

on stack.
LDMFD SP!,{R1,R3,FP,PC} Restore registers and Return.

Subroutine PUTCHAR

PUTCHAR STMFD SP!,{R2−R4,FP,LR} Save registers.
ADD FP,SP,#12 Load frame pointer.
LDR R2,[FP,#8] Load address OUTSTATUS into
LDR R3,[FP,#12] R2 and character into R3.

DISPLAY LDR R4,[R2] Wait for display.
TST R4,#8
BEQ DISPLAY
STRB R3,[R2,#4] Send character to display.
LDMFD SP!,{R2−R4,FP,PC} Restore registers and Return.

7

3.16. The first program section reads the characters, stores them in a 3-byte
area beginning at CHARSTR, and echoes them to a display. The second
section does the conversion to binary and stores the result in BINARY.
The I/O device addresses INSTATUS and OUTSTATUS are in registers
R1 and R2.

ADR R0,CHARSTR Initialize memory pointer
MOV R5,#3 R0 and counter R5.

READ LDR R3,[R1] Read a character and
TST R3,#8 store it in memory.
BEQ READ
LDRB R3,[R1,#4]
STRB R3,[R0],#1

ECHO LDR R4,[R2] Echo the character
TST R4,#8 to the display.
BEQ ECHO
STRB R3,[R2,#4]
SUBS R5,R5,#1 Check if all three
BGT READ characters have been read.

CONVERT ADR R0,CHARSTR Initialize memory pointers
ADR R1,HUNDREDS R0, R1, and R2.
ADR R2,TENS
LDRB R3,[R0,]#1 Load high-order BCD digit
AND R3,R3,#&F into R3.
LDR R4,[R1,R3,LSL #2] Load binary value

corresponding to decimal
hundreds value into
accumulator register R4.

LDRB R3,[R0],#1 Load middle BCD digit
AND R3,R3,#&F into R3.
LDR R3,[R2,R3,LSL #2] Load binary value

corresponding to
decimal tens value
into register R3.

ADD R4,R4,R3 Accumulate into R4.
LDRB R3,[R0],#1 Load low-order BCD digit
AND R3,R3,#&F into R3.
ADD R4,R4,R3 Accumulate into R4.
STR R4,BINARY Store converted value

into location BINARY.

8

3.17. (a) The names FP, SP, LR, and PC, are used for registers R12, R13, R14,
and R15 (frame pointer, stack pointer, link register, and program counter).
The 3-byte memory area for the characters begins at address CHARSTR;
and the converted binary value is stored at BINARY.

The first subroutine, labeled READCHARS, is patterned after the pro-
gram in Figure 3.9. It echoes the characters back to a display as well as
reading them into memory. The second subroutine is labeled CONVERT.

The stack frame format used is like Figure 3.13.

A possible main program is:

Main program

ADR R10,CHARSTR Load parameters into
ADR R11,BINARY R10 and R11 and
STMFD SP!,{R10,R11} push onto stack.
BL READCHARS Branch to first subroutine.

RTNADDR ADD SP,SP,#8 Remove two parameters
. . . from stack and continue.

First subroutine READCHARS

READCHARS STMFD SP!,{R0−R5,FP,LR} Save registers
on stack.

ADD FP,SP,#28 Set up frame
pointer.

LDR R0,[FP,#4] Load R0, R1,
ADR R1,INSTATUS and R2 with
ADR R2,OUTSTATUS parameters.
MOV R5,#3 Same code as
. . . in solution to
BGT READ Problem 3.16.
LDR R0,[FP,#8] Load R0,R1,R2
LDR R5,[FP,#12] and R5 with
ADR R1,HUNDREDS parameters.
ADR R2,TENS
BL CONVERT Call second

subroutine.
LDMFD SP!,{R0−R5,FP,PC} Return to

Main program.

9

Second subroutine CONVERT

CONVERT STMFD SP!,{R3,R4,FP,LR} Save registers
on stack.

ADD FP,SP,#8 Set up frame
pointer.

LDRB R3,[R0],#1 Same code as
. . . in solution to
ADD R4,R4,R3 Problem 3.16.
STR R4,[R5] Store binary

number.
LDMFD SP!,{R3,R4,FP,PC} Return to

first subroutine.

(b) The contents of the top of the stack after the call to the CONVERT
routine are:

[R0]
[R1]
[R2]
[R3]
[R4]
[R5]

FP → [FP]
[LR] = RTNADDR

CHARSTR
BINARY

Original TOS

10

3.18. See the solution to Problem 2.18 for the procedures needed to perform the
append and remove operations.

Register assignment:

R0 − Data byte to append to or remove from queue

R1 − IN pointer

R2 − OUT pointer

R3 − Address of first queue byte location

R4 − Address of last queue byte location (= [R3] + k −1)

R5 − Auxiliary register for address of next appended byte.

Initially, the queue is empty with [R1] = [R2] = [R3]

APPEND routine:

MOV R5,R1
ADD R1,R1,#1 Increment R1 Modulo k.
CMP R1,R4
MOVGT R1,R3
CMP R1,R2 Check if queue is full.
MOVEQ R1,R5 If queue full, restore
BEQ QUEUEFULL IN pointer and send

message that queue is full.
STRB R0,[R5] If queue not full,

append byte and continue.

REMOVE routine:

CMP R1,R2 Check if queue is empty.
BEQ QUEUEEMPTY If empty, send message.
LDRB R0,[R2],#1 Otherwise, remove byte
CMP R2,R4 and increment R2
MOVGT R2,R3 Modulo k.

3.19. Program trace:

TIME R0 R2 R3 LIST LIST LIST LIST LIST
+1 +2 +3 +4

After 1st 120 1004 1000 106 13 67 45 120
After 2nd 106 1003 1000 67 13 45 106 120
After 3rd 67 1002 1000 45 13 67 106 120
After 4th 45 1001 1000 13 45 67 106 120

11

3.20. Calling program

ADR R4,LISTN Pass parameter LISTN to
subroutine in R4.
Assume LISTN + 4 = LIST.

BL SORT

Subroutine SORT

SORT STMFD R13!,{R0−R3,R5,R14} Save registers.
LDR R0,[R4],#4 Initialize outer loop
ADD R2,R4,R0,LSL #2 base register R2

to LIST + 4n.
ADD R5,R4,#4 Load LIST + 4 into

register R5.
OUTER LDR R0,[R2,#−4]! Comments similar

MOV R3,R2 as in Figure 3.15.
INNER LDR R1,[R3,#−4]!

CMP R1,R0
STRGT R1,[R2]
STRGT R0,[R3]
MOVGT R0,R1
CMP R3,R4
BNE INNER
CMP R2,R5
BNE OUTER
LDMFD R13!,{R0−R3,R5,R15} Restore registers

and return.

12

3.21. The alternative program from the instruction labeled OUTER to the end
is:

OUTER LDRB R0,[R2,#−1]! Load LIST(j) into R0.
MOV R3,R2 Initialize inner loop base register

R3 to LIST + n− 1.
MOV R6,R2 Load address of initial largest

element into R6.
MOV R7,R0 Load initial largest element

into R7.
INNER LDRB R1,[R3,#−1]! Load LIST(k) into R1.

CMP R1,R7 Compare LIST(k) to current largest.
MOVGT R6,R3 Update address and value of
MOVGT R7,R1 largest if LIST(k) larger.
CMP R3,R4 Check if inner loop completed.
BNE INNER
STRB R0,[R6] Swap; correct code even if no
STRB R7,[R2] larger element is found.
CMP R2,R5
BNE OUTER

The advantage of this approach is that the two MOVGT instructions in
the inner loop of the alternative program execute faster than the three-
instruction interchange code in Figure 3.15b.

3.22. The record pointer is register R0, and registers R1, R2, and R3, are used
to accumulate the three sums, as in Figure 2.15. Assume that the list is
not empty.

MOV R0,#1000
MOV R1,#0
MOV R2,#0
MOV R3,#0

LOOP LDR R5,[R0,#8]
ADD R1,R1,R5
LDR R5,[R0,#12]
ADD R2,R2,R5
LDR R5,[R0,#16]
ADD R3,R3,R5
LDR R0,[R0,#4]
CMP R0,#0
BNE LOOP
STR R1,SUM1
STR R2,SUM2
STR R3,SUM3

13

3.23. If the ID of the new record matches the ID of the Head record, the new
record will become the new Head. If the ID matches that of a later record,
it will be inserted immediately after that record, including the case where
the matching record is the Tail.

Modify Figure 3.16 as follows:

• Add the following instruction as the first instruction of the subrou-
tine:

INSERTION MOV R10,#0 Anticipate successful
insertion of new record.

• After the second CMP instruction, insert the following two instruc-
tions:

MOVEQ R10, RHEAD ID matches that of
MOVEQ PC, R14 Head record.

• After the instruction labeled LOOP, insert the following four instruc-
tions:

LDR R0, [RNEXT]
CMP R0, R1
MOVEQ R10, RNEXT
MOVEQ PC, R14

• Remove the instruction with the comment “Go further?” because it
has already been done in the previous bullet.

14

3.24. If the list is empty, the result is unpredictable because the second instruc-
tion compares the new ID with the contents of memory location zero. If
the list is not empty, the program continues until RCURRENT points to
the Tail record. Then the instruction at LOOP loads zero into RNEXT
and the result is unpredictable.

Replace Figure 3.17 with the following code:

DELETION CMP RHEAD, #0 If list is empty, return
MOVEQ PC, R14 with RIDNUM unchanged.

CHECKHEAD LDR R0, [RHEAD] Check if Head record is
CMP R0, RIDNUM to be deleted. If yes,
LDREQ RHEAD, [RHEAD,#4] delete it, and then return
MOVEQ RIDNUM, #0 with zero in RIDNUM.
MOVEQ PC, R14
MOV RCURRENT, RHEAD Otherwise, continue search.

LOOP LDR RNEXT, [RCURRENT,#4]
CMP RNEXT, #0 If all records checked, return
MOVEQ PC, R14 with RIDNUM unchanged.
LDR R0, [RNEXT] Is next record the one
CMP R0, RIDNUM to be deleted?
LDREQ R0, [RNEXT,#4] If yes, delete it, and
STREQ R0, [RCURRENT,#4] return with zero
MOVEQ RIDNUM, #0 in RIDNUM.
MOVEQ PC, R14
MOV RCURRENT, RNEXT Otherwise, loop back and
B LOOP continue to search.

15

PART II: 68000

3.25. (a) Location $2000 ← $1000 + $3000 = $4000
The instruction occupies two bytes. One memory access is needed to fetch
the instruction and 4 to execute it.

(b) Effective Address = $1000 + $1000 = $2000,
D0 ← $3000 + $1000 = $4000
4 bytes; 2 accesses to fetch instruction and 2 to execute it.

(c) $2000 ← $2000 + $3000 = $5000
6 bytes; 3 accesses to fetch instruction and 4 to execute it.

3.26. (a) ADDX −(A2),D3
In Add extended, both the destination and source operands must use the
same addressing mode, either register or autodecrement.

(b) LSR.L #9,D2
The number of bits shifted must be less than 8.

(c) MOVE.B 520(A0,D2)
The offset value requires more than 8 bits. Also, no destination operand
is specified.

(d) SUBA.L 12(A2,PC),A0
In relative full addressing mode the PC must be specified before the ad-
dress register.

(e) CMP.B #254,$12(A2,D1.B)
The destination operand must be a data register. Also the source operand
is outside the range of signed values that can be represented in 8 bits.

3.27. Program trace:

TIME D0 D1 A2 N NUM1 SUM
after 1st ADD.W 83 5 2402 5 2400 0
after 2nd ADD.W 128 4 2404 5 2400 0
after 3rd ADD.W 284 3 2406 5 2400 0
after 4th ADD.W 34 2 2408 5 2400 0
after 5th ADD.W 134 1 2410 5 2400 0
after last MOVE.L 134 0 2410 5 2400 134

16

3.28. (a) This program finds the location of the smallest element in a list whose
starting address is stored in MEM1, and size in MEM2. The smallest
element is stored in location DESIRED.

(b) 16 words are required to store this program. We have assumed that
the assembler uses short absolute addresses. (Long addresses are normally
specified as MEM1.L, etc.) Otherwise, 3 more words would be needed.

(c) The expression for memory accesses is T = 16 + 5n + 4m.

3.29. (a) They both leave the 17th negative word in RSLT.

(b) Both programs scan through the list to find the 17th negative number
in the list.

(c) Program 1 takes 26 bytes of memory, while Program 2 requires 24.

(d) Let P be the number of non-negative entries encountered. Program 1
requires 9 + 7× 17 + 3× P and Program 2 requires 10 + 6× 17 + 4× P
memory accesses.

(e) Program 1 requires slightly more memory, but has a clear speed ad-
vantage. Program 2 destroys the original list.

3.30. A 68000 program to compare two byte lists at locations X and Y, putting
the larger byte at each position in a list starting at location LARGER, is:

MOVEA.L #X,A0
MOVEA.L #Y,A1
MOVEA.L #LARGER,A2
MOVE.W N,D0
SUBQ #1,D0 Initialize D0 to [N]−1

LOOP CMP.B (A0)+,(A1)+ Compare lists and advance pointers
BGT LISTY
MOVE.B −1(A0),(A2)+ Copy item from list X
BRA NEXT Check next item

LISTY MOVE.B −1(A1),(A2)+ Copy item from list Y
NEXT DBRA D0,LOOP Continue if more entries

17

3.31. A 68000 program for string matching:

MOVEA.L #STRING,A0 Get location of STRING
MOVE.W N,D0 Load D0 with appropriate
MOVE.W M,D1 count for “match attempts”
SUB.W D1,D0

LOOP MOVEA.L #SUBSTRING,A1 Get location of SUBSTRING
MOVE.W M,D1 Get size of SUBSTRING
MOVE.L A0,A2 Save location in STRING at which

comparison will start
MATCHER DBRA D1,SUCCESS

CMP.B (A0)+,(A1)+ Compare and advance pointers
BEQ MATCHER If same, check next character
MOVEA.L A2,A0 Match failed; advance starting
ADDQ.L #1,A0 character position in STRING
DBRA D0,LOOP Check if end of STRING
MOVE.L #0,D0 Substring not found
BRA NEXT

SUCCESS MOVEA.L A2,D0 Save location where match found
NEXT Next instruction

Note that DBRA is used in two ways in this program, once at the beginning
and once at the end of a loop. In the first case, the counter is initialized
to [M], while in the second the corresponding counter is initialized to
[N]−[M]. This arrangement handles a substring of zero length correctly,
and stops the attempt to find a match at the proper position.

18

3.32. A 68000 program to generate the first n numbers of the Fibonacci series:

MOVEA.L #MEMLOC,A0 Starting address
MOVE.B N,D0 Number of entries
CLR D1 The first entry = 0
MOVE.B D1,(A0)+
MOVE #1,D2 The second entry = 1
MOVE.B D2,(A0)+
SUBQ.B #3,D0 First two entries already saved

LOOP MOVE.B −2(A0),D1 Get second-last value
ADD.B D1,D2 Add to last value
MOVE.B D2,(A0)+ Store new value
DBRA D0,LOOP

The first 15 numbers in the Fibonacci sequence are: 0, 1, 1, 2, 3, 5, 8, 13,
21, 34, 55, 89, 144, 233, 377. Therefore, the largest value of n that this
program can handle is 14, because the largest number that can be stored
in a byte is 255.

3.33. Let A0 point to the ASCII word. To change to uppercase, we need to
change bit b5 from 1 to 0.

NEXT MOVE.B (A0),D0 Get character
CMP.B #$20,D0 Check if space character
BEQ END
ANDI.B #$DF,D0 Clear bit 5
MOVE.B D0,(A0)+ Store converted character
BRA NEXT

END Next instruction

19

3.34. Let Stride = 2(j + 1), which is the distance in bytes between scores on a
particular test for adjacent students in the list.

MOVE J,D3 Compute Stride = 2(j + 1)
ADDQ #1,D3
LSL #1,D3
MOVEA.L #SUM,A4 Use A4 as pointer to the sums
MOVEA.L #LIST,A5 Use A5 as pointer to scores
ADDQ #2,A5 for student 1
MOVE J,D6 Use D6 as outer loop counter
SUBQ #1,D6 Adjust for use of DBRA instruction

OUTER MOVE N,D7 Use D7 as inner loop counter
SUBQ #1,D7 Adjust for use of DBRA instruction
MOVE A5,A2 Use A2 as base for scanning test scores
CLR D0 Use D0 as sum accumulator

INNER ADD [A2],D0 Accumulate test scores
ADD D3,A2 Point to next score
DBRA D7,INNER Check if score for current test

for all students have been added
MOVE D0,[A4] Store sum in memory
ADDQ #2,A5 Increment to next test
ADDQ #2,A4 Point to next sum
DBRA D6,OUTER Check if scores for all tests

have been accumulated

3.35. This program is similar to Figure 3.27, and makes the same assumptions
about status word bit locations.

MOVE #N,D0
SUBQ.W #1,D0 Initialize D0 to n− 1

READ BTST.W #3,INSTATUS
BEQ READ Wait for data ready
MOVE.B DATAIN,D1 Get new character
MOVE.B D1,−(A0) Push on user stack

ECHO BTST.W #3,OUTSTATUS
BEQ ECHO Wait for terminal ready
MOVE.B D1,DATAOUT Output new character
DBRA D0,READ Read next character

20

3.36. Assume that most of the time between successive characters being struck
is spent in the two-instruction wait loop that starts at location READ. The
BEQ READ instruction is executed once every 40 ns while this loop is
being executed. There are 109/10 = 108 ns between successive characters.
Therefore, the BEQ READ instruction is executed 108/40 = 2.5×
106 times per character entered.

3.37. Assume that register A4 is used as a memory pointer by the main program.

Main Program

READLINE BSR GETCHAR Call character read subroutine.
MOVE.B D0,(A4)+ Store character in memory.
BSR PUTCHAR Call character display subroutine.
CMPI.B #CR,D0 Check for end-of-line character.
BNE READLINE

Subroutine GETCHAR

GETCHAR BTST.W #3,(A0) Wait for character.
BEQ GETCHAR
MOVE.B (A1),D0 Load character into D0.
RTS Return.

Subroutine PUTCHAR

PUTCHAR BTST.W #3,(A2) Wait for display.
BEQ PUTCHAR
MOVE.B D0,(A3) Send character to display.
RTS Return.

21

3.38. Addresses INSTATUS and DATAIN are pushed onto the processor stack
in that order by the main program as parameters for GETCHAR. The
character read is passed back to the main program in the DATAIN posi-
tion on the stack. The addresses OUTSTATUS and DATAOUT and the
character to be displayed are pushed onto the processor stack in that order
by the main program as parameters for PUTCHAR. A stack structure like
that shown in Figure 3.29 is used.

GETCHAR uses registers A0, A1, and D0 to hold INSTATUS, DATAIN,
and the character read.

PUTCHAR uses registers A0, A1, and D0 to hold OUTSTATUS, DATAOUT,
and the character to be displayed.

The main program uses register A0 as a memory pointer, and uses register
D0 to hold the character read.

Main Program

READLINE MOVE.L #INSTATUS,−(A7) Push address parameters
MOVE.L #DATAIN,−(A7) onto the stack.
BSR GETCHAR Call character read subroutine.
MOVE.L (A7)+,D0 Pop long word containing
MOVE.B D0,(A0)+ character from top of

stack into D0 and
store character into memory.

ADDI #4,A7 Remove INSTATUS from stack.
MOVE.L #OUTSTATUS,−(A7) Push address parameters
MOVE.L #DATAOUT,−(A7) onto stack.
MOVE.L D0,−(A7) Push long word containing

character onto stack.
BSR PUTCHAR Call character display subroutine.
ADDI #12,A7 Remove three parameters from stack.
CMPI.B #CR,D0 Check for end-of-line character.
BNE READLINE

Subroutine GETCHAR

GETCHAR MOVEM D0/A0-A1,−(A7) Save registers.
MOVE.L 20(A7),A0 Load address INSTATUS into A0.
MOVE.L 16(A7),A1 Load address DATAIN into A1.

READ BTST #3,(A0) Wait for character.
BEQ READ
MOVE.B (A1),D0 Load character into D0 and
MOVE.L D0,16(A7) push onto the stack,

overwriting DATAIN.
MOVEM (A7)+,D0/A0-A1 Restore registers.
RTS Return.

22

Subroutine PUTCHAR

PUTCHAR MOVEM D0/A0-A1,−(A7) Save registers.
MOVE.L 24(A7),A0 Load address OUTSTATUS into A0.
MOVE.L 20(A7),A1 Load address DATAOUT into A1.
MOVE.L 16(A7),D0 Load long word containing

character into D0.
DISPLAY BTST #3,(A0) Wait for device ready.

BEQ DISPLAY
MOVE.B D0,(A1) Send character to display.
MOVEM (A7)+,D0/A0-A1 Restore registers.
RTS Return.

23

3.39. See the solution to Problem 2.18 for the procedures needed to perform the
append and remove operations.

Register assignment:

D0 − Data byte to append to or remove from queue

A1 − IN pointer

A2 − OUT pointer

A3 − Address of first queue byte location

A4 − Address of last queue byte location (= [A3] + k −1)

A5 − Auxiliary register for address of next appended byte

Initially, the queue is empty with [A1] = [A2] = [A3]

APPEND routine:

MOVEA.L A1,A5
ADDQ.L #1,A1 Increment A1 Modulo k.
CMPA.L A1,A4
BGE CHECK
MOVEA.L A3,A1

CHECK CMPA.L A1,A2 Check if queue is full.
BNE APPEND If queue not full, append byte.
MOVEA.L A5,A1 Otherwise, restore
BRA QUEUEFULL IN pointer and send

message that queue is full.
APPEND MOVE.B D0,[A5] Append byte.

REMOVE routine:

CMPA.L A1,A2 Check if queue is empty.
BEQ QUEUEEMPTY If empty, send message.
MOVE.B (A2)+,D0 Otherwise, remove byte
CMPA.L A2,A4 and increment A2
BGE NEXT Modulo k.
MOVEA.L A3,A2

NEXT . . .

24

3.40. Using the same assumptions as in Problem 3.35 and its solution, a 68000
program to convert 3 input decimal digits to a binary number is:

BSR READ Get first character
ASL #1,D0 Multiply by 2 for word offset
MOVE.W HUNDREDS(D0),D1 Get hundreds value
BSR READ Get second character
ASL #1,D0 Multiply by 2 for word offset
ADD.W TENS(D0),D1 Get tens value
BSR READ Get third character
ADD.W D0,D1 D1 contains value of binary

number

READ BTST.W #3,INSTATUS
BEQ READ Wait for new character
MOVE.B DATAIN,D0 Get new character
AND.B #$0F,D0 Convert to equivalent binary

value
RTS

25

3.41. (a) The subroutines convert 3 decimal digits to a binary value.

GETDECIMAL MOVEM.L D0/A0−A1,−(A7) Save registers
MOVEA.L 20(A7),A0 Get string buffer address
MOVE.B #2,D0 Use D0 as character counter

READ BTST.W #3,INSTATUS
BEQ READ
MOVE.B DATAIN,(A0)+ Get and store character
DBRA D0,READ Repeat until all characters

received
MOVE.L 16(A7),A1 Pointer to result
BSR CONVERSION
MOVEM.L (A7)+,D0/A0−A1 Restore registers
RTS

CONVERSION MOVEM.L D0−D1,−(A7) Save registers
MOVE.B −(A0),D0 Get least sig. digit
AND.W #$0F,D0 Numeric value of digit
MOVE.B −(A0),D1 Get tens digit
AND.W #$0F,D1 Numeric value of digit
ASL #1,D1
ADD.W TENS(D1),D0 Add tens value
MOVE.B −(A0),D1 Get hundreds digit
AND.W #$0F,D1 Numeric value of digit
ASL #1,D1
ADD.W HUNDREDS(D1),D0 Add hundreds value
MOVE.W D0,(A1) Store result
MOVEM.L (A7)+,D0−D1 Restore registers
RTS

(b) The contents of the top of the stack after the call to the CONVERSION
routine are:

Return address of CONVERSION
D0MAIN

A1MAIN

A0MAIN

Return address of GETDECIMAL
Result address
Buffer address
ORIG TOS

26

3.42. Assume that the subroutine can change the contents of any registers used
to pass parameters. Let Stride = 2m, which is the distance in bytes
between successive word elements in a given column.

LSL #1,D4 Set Stride in D4
SUB D1,D2 Set D2 to contain
LSL #1,D2 2(y − x)
LSL #1,D1 Set A0 to address
ADDA D1,A0 A(0,x)
BRA START

LOOP MOVE (A0),D1 Load [A(i,x)] into D1
ADD D1,(A0,D2) Add array elements
ADD D4,A0 Move to next row

START DBRA D3,LOOP Repeat loop until all
entries have been added

RTS Return

Note that LOOP is entered by branching to the DBRA instruction. So
DBRA decrements D3 to contain n−1, which is the correct starting value
when the DBRA instruction is used.

3.43. A 68000 program to reverse the order of bits in register D2:

MOVE #15,D0 Use D0 as counter
CLR D1 D1 will receive new value

LOOP LSL D2 Shift MSB of D2 into X bit
ROXR D1 Shift X bit into MSB of D1
DBRA D0,LOOP Repeat until D0 reaches −1
MOVE D1,D2 Put new value back in D2

27

3.44. Bytes/access
MOVEA.L #LOC,A0 6/3
MOVE.B (A0)+,D0 2/2
LSL.B #4,D0 2/1
MOVE.B (A0),D1 2/2
ANDI.B #$F,D1 4/2
OR.B D0,D1 2/1
MOVE.B D1,PACKED 4/3

Total size is 22 bytes and execution involves 14 memory access cycles.

3.45. The trace table is:

TIME 1000 1001 1002 1003 1004 D1 D2 D3
after 1st BGT OUTER 106 13 67 45 120 3 −1 120
after 2nd BGT OUTER 67 13 45 106 120 2 −1 106
after 3rd BGT OUTER 45 13 67 106 120 1 −1 67
after 4th BGT OUTER 13 45 67 106 120 0 −1 45

3.46. Assume the list address is passed to the subroutine in register A1. When
the subroutine is entered, the number of list entries needs to be loaded
into D1. Then A1 must be updated to point to the first entry in the list.
Because addresses must be incremented or decremented by 2 to handle
word quantities, the address mode (A1,D1) is no longer useful. Also,
since the initial address points to the beginning of the list, we will scan
the list forwards.

MOVE (A1)+,D1 Load number of entries, n
SUBQ #2,D1 Outer loop counter ← n− 2 (j: 0 to n− 2)

OUTER MOVE D1,D2 Inner loop ← outer loop counter
MOVEA A1,A2 Use A2 as a pointer in the inner loop
ADDQ #2,A2 k ← j + 1 (k: 1 to n− 1)

INNER MOVE (A1),D3 Current maximum value in D3
CMP (A2),D3
BLE NEXT If LIST(j) ≤ LIST(k), go to next
MOVE (A2),(A1) Interchange LIST(k)
MOVE D3,(A2) and LIST(j).

NEXT ADDQ #2,A2
DBRA D2,INNER
ADDQ #2,A1
DBRA D1,OUTER If not finished,
RTS return

28

3.47. Use D4 to keep track of the position of the largest element in the inner
loop and D5 to record its value.

MOVEA.L #LIST,A1 Pointer to the start of the list
MOVE N,D1 Initialize outer loop
SUBQ #1,D1 index j in D1

OUTER MOVE D1,D2 Initialize inner loop
SUBQ #1,D2 index k in D2

MOVE.L D1,D4 Index of largest element
MOVE.B (A1,D1),D5 Value of largest element

INNER MOVE.B (A1,D2),D3 Get new element, LIST(k)
CMP.B D3,D5 Compare to current maximum
BCC NEXT If lower go to next entry
MOVE.L D2,D4 Update index of largest element
MOVE.L D3,D5 Update largest value

NEXT DBRA D2,INNER Inner loop control
MOVE.B (A1,D1),(A1,D4) Swap LIST(j) and LIST(k);
MOVE.B D5,(A1,D1) correct even if same
SUBQ #1,D1 Branch back
BGT OUTER if not finished

The potential advantage is that the inner loop of the new program should
execute faster.

3.48. Assume that register A0 points to the first record. We will use registers
D1, D2, and D3 to accumulate the three sums. Assume also that the list
is not empty.

CLR D1
CLR D2
CLR D3

LOOP ADD.L 8(A0),D1 Accumulate scores for test 1
ADD.L 12(A0),D2 Accumulate scores for test 2
ADD.L 16(A0),D3 Accumulate scores for test 3
MOVE.L 4(A0),D0 Get link
MOVEA.L D0,A0 Load in pointer register
BNE LOOP
MOVE.L D1,SUM1
MOVE.L D2,SUM2
MOVE.L D3,SUM3

Note that the MOVE instruction that reads the link value into register
D0 sets the Z and N flags. The MOVEA instruction does not affect the
condition code flags. Hence, the BNE instruction will test the correct
values.

29

3.49. In the program of Figure 3.35, if the ID of the new record matches the ID
of the Head record, the new record will become the new Head. If the ID
matches that of a later record, it will be inserted immediately after that
record, including the case where the matching record is the Tail.

Modify the program as follows.

Add the following as the first instruction
INSERTION MOVE.L #0,A6 Anticipate a successful insertion
After the instruction labeled HEAD insert

BEQ DUPLICATE1 New record matches head
After the BLT INSERT instruction insert

BEQ DUPLICATE2 New record matches a record
other than head

Add the following instructions at the end
DUPLICATE1 MOVE.L A0,A6 Return the address of the head

RTS
DUPLICATE2 MOVE.L A3,A6 Return address of matching record

RTS

3.50. If the ID of the new record is less than that of the head, the program
in Figure 3.36 will delete the head. If the list is empty, the result is
unpredictable because the first instruction compares the new ID with the
contents of memory location zero. If the list is not empty, the program
continues until A2 points to the Tail record. Then the instruction at
LOOP loads zero into A3 and the result is unpredictable.

To correct behavior, modify the program as follows.

After the first BGT instruction insert
BLT ERROR ID of new record less than head
MOVE.L #0,D1 Deletion successful

After the BEQ DELETE instruction insert
BGT ERROR ID of New record is less than

that of the next record and
greater than the current record

Add the following instruction after DELETE
MOVE.L #0,D1 Deletion successful

Add the following instruction at the end
ERROR RTS Record not in the list

30

PART III: Intel IA-32

3.51. Initial memory contents are:

[1000] = 1
[1004] = 2
[1008] = 3
[1012] = 4
[1016] = 5
[1020] = 6

(a) [EBX + ESI*4 + 8] = 1016
EAX ← 10 + 5 = 15

(b) The values 20 and 30 are pushed onto the processor stack, and then 30
is popped into EAX and 20 is popped into EBX. The Subtract instruction
then performs 30 − 20, and places the result of 10 into EAX.

(c) The address value 1008 is loaded into EAX, and then 3 is loaded into
EBX.

3.52. (a) OK

(b) ERROR: Only one operand can be in memory.

(c) OK

(d) ERROR: Scale factor can only be 1, 2, 4, or 8.

(e) OK

(f) ERROR: An immediate operand can not be a destination.

(g) ERROR: ESP cannot be used as an index register.

3.53. Program trace:

TIME EAX EBX ECX
After 1st execution of LOOP −113 NUM1 − 4 4
After 2nd execution of LOOP 129 NUM1 − 4 3
After 3rd execution of LOOP 78 NUM1 − 4 2

31

3.54. Assume bytes are unsigned 8-bit values.

MOV ECX,N ECX is list counter.
LEA ESI,X ESI points to X list.
SUB ESI,1
LEA EDI,Y EDI points to Y list.
SUB EDI,1
LEA EDX,LARGER EDX points to LARGER list.
SUB EDX,1

START: MOV AL,[ESI + ECX] Load X byte into AL.
MOV BL,[EDI + ECX], Load Y byte into BL.
CMP AL,BL Compare bytes.
JAE XLARGER Branch if X byte

larger or same.
MOV [EDX + ECX],BL Otherwise, store

Y byte.
JMP CHECK

XLARGER MOV [EDX + ECX],AL Store X byte.
CHECK LOOP START Check if done.

32

3.55. The inner loop checks for a match at each possible position.

MOV EDX,N Compute outer loop count
SUB EDX,M and store in EDX.
INC EDX
LEA EAX,STRING Use EAX as a base

pointer for each match
attempt.

OUTER: MOV ESI,EAX Use ESI and EDI as
LEA EDI,SUBSTRING running pointers for

each match attempt.
MOV ECX,M Initialize inner loop counter.

INNER: MOV BL,[EDI] Load next substring byte
CMP BL,[ESI] into BL and compare to

corresponding string byte.
JNE NOMATCH If not equal, go to

next substring position.
INC ESI If equal, increment running
INC EDI pointers to next byte

positions.
LOOP INNER Check if all substring

bytes compared.
JMP NEXT If a match is found,

exit with string position
in EAX.

NOMATCH: INC EAX Increment EAX to next possible
substring position.

DEC EDX Check if all positions tried.
JG OUTER
MOV EAX,0 If yes, load zero into

EAX and exit.
NEXT: . . .

33

3.56. This solution assumes that the last number in the series of n numbers can
be represented in a 32-bit doubleword, and that n > 2.

MOV ECX,N Use ECX to count numbers
SUB ECX,2 generated after 1.
LEA EDI,MEMLOC Use EDI as a memory

pointer.
MOV EAX,0 Store first two numbers
MOV [EDI],EAX from EAX and EBX into
MOV EBX,1 memory.
ADD EDI,4
MOV [EDI],EBX

LOOPSTART: ADD EDI,4 Increment memory pointer.
MOV EAX,[EDI − 8] Load second last value.
ADD EBX,EAX Add to last value.
MOV [EDI],EBX Store new value.
LOOP LOOPSTART Check if all n numbers

generated.

3.57. Assume register EAX contains the address (WORD) of the first character.
To change characters from lowercase to uppercase, change bit b5 from 1
to 0.

NEXT: MOV BL,[EAX] Load next character into BL.
CMP BL,20H Check if space character.
JE END If space, exit.
AND BL,DFH Clear bit b5.
MOV [EAX],BL Store converted character.
INC EAX Increment memory pointer.
JMP NEXT Convert next character.

END: . . .

34

3.58. The parameter Stride = (j + 1) is the distance in doublewords between
scores on a particular test for adjacent students in the list.

MOV EDX,J Load outer loop counter EDX.
INC J Increment memory location J

to contain Stride = j + 1.
LEA EBX,SUM Load address SUM into EBX.
LEA EDI,LIST Load address of test score 1
ADD EDI,4 for student 1 into EDI.

OUTER: MOV ECX,N Load inner loop counter ECX.
MOV EAX,0 Clear scores accumulator EAX.
MOV ESI,0 Clear index register ESI.

INNER: ADD EAX,[EDI + ESI*4] Add next test score.
ADD ESI,J Increment index register ESI

by Stride value.
LOOP INNER Check if all n scores

have been added.
MOV [EBX],EAX Store current test sum.
ADD EBX,4 Increment sum location pointer.
ADD EDI,4 Increment base pointer to next

test score for student 1.
DEC EDX Check if all test scores summed.
JG OUTER

This solution uses six of the IA-32 registers. It does not use registers EBP
or ESP, which are normally reserved as pointers for the processor stack.
Use of EBP to hold the parameter Stride would result in a somewhat more
efficient inner loop.

3.59. Use register ECX as a counter register, and use EBX as a work register.

MOV ECX,32 Load ECX with count value 32.
MOV EBX,0 Clear work register EBX.

LOOPSTART: SHL EAX,1 Shift contents of EAX left
one bit position, moving the
high-order bit into the CF flag.

RCR EBX,1 Rotate EBX right one bit
position, including the CF flag.

LOOP LOOPSTART Check if finished.
MOV EAX,EBX Load reversed pattern into EAX.

35

3.60. See the solution to Problem 2.18 for the procedures needed to perform the
append and remove operations.

Register assignment:

AL − Data byte to append to or remove from the queue
ESI − IN pointer
EDI − OUT pointer

EBX − Address of first queue byte location
ECX − Address of last queue byte location ([EBX] + k − 1)
EDX − Auxiliary register for location of next appended byte

Initially, the queue is empty with [ESI] = [EDI] = [EBX].

Append routine:

MOV EDX,ESI Save current value of IN
pointer ESI in auxiliary
register EDX.

INC ESI These four instructions
CMP ECX,ESI increment ESI Modulo k.
JGE CHECK
MOV ESI,EBX

CHECK: CMP EDI,ESI Check if queue is full.
JNE APPEND If not full, append byte.
MOV ESI,EDX Otherwise, restore IN pointer
JMP QUEUEFULL and send message that

queue is full.
APPEND: MOV [EDX],AL Append byte.

Remove routine:

CMP EDI,ESI Check if queue is empty.
JE QUEUEEMPTY If empty, send message.
MOV AL,[EDI] Otherwise, remove byte and
INC EDI increment EDI Modulo k.
CMP ECX,EDI
JGE NEXT
MOV EDI,EBX

NEXT: . . .

36

3.61. This program is similar to Figure 3.44; and it makes the same assumptions
about status word bit locations.

MOV ECX,N Use ECX as the loop counter.
READ: BT INSTATUS,3 Wait for the character.

JNC READ
MOV AL,DATAIN Transfer character into AL.
DEC EBX Push character onto user stack.
MOV [EBX],AL

ECHO: BT OUTSTATUS,3 Wait for the display.
JNC ECHO
MOV DATAOUT,AL Send character to display.
LOOP READ Check if all n characters read.

3.62. Assume that most of the time between successive characters being struck
is spent in the two-instruction wait loop that starts at location READ. The
JNC READ instruction is executed once every 20 ns while this loop is
being executed. There are 109/10 = 108 ns between successive characters.
Therefore, the JNC READ instruction is executed 108/20 = 5×106

times per character entered.

3.63 Assume that register ECX is used as a memory pointer by the main pro-
gram.

Main Program

READLINE: CALL GETCHAR
MOV [ECX],AL Store character in memory.
INC ECX Increment memory pointer.
CALL PUTCHAR
CMP AL,CR Check for end-of-line.
JNE READLINE Go back for more.

Subroutine GETCHAR

GETCHAR: BT DWORD PTR [EBX],3 Wait for character.
JNC GETCHAR
MOV AL,[EDX] Load character into AL.
RET

Subroutine PUTCHAR

PUTCHAR: BT DWORD PTR [ESI],3 Wait for display.
JNC PUTCHAR
MOV [EDI],AL Display character.
RET

37

3.64. Addresses INSTATUS and DATAIN are pushed onto the processor stack
in that order by the main program as parameters for GETCHAR. The
character read is passed back to the main program in the DATAIN posi-
tion on the stack. The addresses OUTSTATUS and DATAOUT and the
character to be displayed are pushed onto the processor stack in that order
by the main program as parameters for PUTCHAR. A stack structure like
that shown in Figure 3.46 is used.

GETCHAR uses registers EBX, EDX, and AL (EAX) to hold INSTATUS,
DATAIN, and the character read.

PUTCHAR uses registers ESI, EDI, and AL (EAX) to hold OUTSTATUS,
DATAOUT, and the character to be displayed.

Assume that register ECX is used as a memory pointer by the main pro-
gram.

Main Program

READLINE: PUSH OFFSET INSTATUS Push address parameters
PUSH OFFSET DATAIN onto the stack.
CALL GETCHAR
POP EAX Pop the doubleword

containing the character
read into EAX.

MOV [ECX],AL Store character in
low-order byte of EAX
into the memory.

INC ECX Increment the memory pointer.
ADD ESP,4 Remove parameter INSTATUS

from top of the stack.
PUSH OFFSET OUTSTATUS Push address parameters
PUSH OFFSET DATAOUT onto the stack.
PUSH EAX Push doubleword containing

the character to be displayed
onto the stack.

CALL PUTCHAR
ADD ESP,12 Remove three parameters

from the stack.
CMP AL,CR Check for end-of-line

character.
JNE READLINE Go back for more.

38

Subroutine GETCHAR

GETCHAR: PUSH EAX Save registers to be
PUSH EBX used in the subroutine.
PUSH EDX
MOV EBX,[ESP + 20] Load INSTATUS into EBX.
MOV EDX,[ESP + 16] Load DATAIN into EDX.

READ: BT DWORD PTR [EBX],3 Wait for character.
JNC READ
MOV AL,[EDX] Read character into AL.
MOV [ESP + 16],EAX Overwrite DATAIN in the

stack with the doubleword
containing the character read.

POP EDX Restore registers.
POP EBX
POP EAX
RET

Subroutine PUTCHAR

PUTCHAR: PUSH EAX Save registers to be
PUSH ESI used in the subroutine.
PUSH EDI
MOV ESI,[ESP + 24] Load OUTSTATUS.
MOV EDI,[ESP + 20] Load DATAOUT.
MOV EAX,[ESP + 16] Load doubleword containing

character to be displayed
into register EAX.

DISPLAY: BT DWORD PTR [ESI],3 Wait for the display.
JNC DISPLAY
MOV [EDI],AL Display character.
POP EDI Restore registers.
POP ESI
POP EAX
RET

39

3.65. Using the same assumptions as in Problem 3.61 and its solution, an IA-32
program to convert 3 input decimal digits to a binary number is:

CALL READ Get first character
MOV EBX,[HUNDREDS + EAX * 4] Get hundreds value
CALL READ Get second character
ADD EBX,[TENS + EAX * 4] Add tens value
CALL READ Get third character
ADD EBX,EAX EBX contains value of

binary number

READ: BT INSTATUS,3
JNC READ Wait for new character
MOV AL,DATAIN Get new character
AND AL,0FH Convert to equivalent

binary value
RET

40

3.66. (a) The subroutines convert 3 decimal digits to a binary value.

GETCHARS: PUSH ECX Save registers.
PUSH EBX
PUSH EAX
MOV ECX,3 Use ECX as character

counter.
MOV EBX,[ESP + 20] Load character buffer

address into EBX.
READ: BT INSTATUS,3

JNC READ
MOV BYTE PTR [EBX],DATAIN Get and store character.
INC EBX Increment buffer pointer.
LOOP READ Repeat until all

characters received.
MOV EAX,[ESP + 16] Pointer to result.
CALL CONVERT
POP EAX Restore registers.
POP EBX
POP ECX
RET

CONVERT: PUSH ECX Save registers.
PUSH EDX
DEC EBX Load low-order digit
MOV DL,[EBX] numerical value
AND DL,0FH into EDX.
DEC EBX Load and add
MOV CL,[EBX] tens digit value
AND CL,0FH into EDX.
ADD EDX,[TENS + ECX * 4]
DEC EBX Load and add
MOV CL,[EBX] hundreds digit value
AND CL,0FH into EDX.
ADD EDX,[HUNDREDS + ECX * 4]
MOV [EAX],EDX Store result.
POP EDX Restore registers.
POP ECX
RET

41

(b) The contents of the top of the stack after the call to the CONVERT
subroutine are:

. . .
Return address to GETCHARS

[EAX]
[EBX]
[ECX]

Return address to Main
Result address
Buffer address

ORIGINAL TOS
. . .

3.67. Assume that the subroutine can change the contents of any registers used
to pass parameters. Let Stride = 4m, which is the distance in bytes
between successive doubleword elements in a given column.

SHL EBX,2 Set Stride in EBX.
SUB EDI,ESI Set EDI to y − x.
SHL ESI,2 Set EDX to
ADD EDX,ESI address A(0,x).

LOOP: MOV ESI,[EDX] Add A(i,x) to A(i,y).
ADD [EDX + EDI * 4],ESI
ADD EDX,EBX Move to next row.
DEC EAX Repeat loop until all
JG LOOP entries have been added.
RET Return.

3.68. Program trace:

TIME EDI ECX DL LIST LIST LIST LIST LIST
+1 +2 +3 +4

After 1st 3 −1 120 106 13 67 45 120
After 2nd 2 −1 106 67 13 45 106 120
After 3rd 1 −1 67 45 13 67 106 120
After 4th 0 −1 45 13 45 67 106 120

42

3.69. Assume that the calling program passes the address LIST − 4 to the
subroutine in register EAX.

Subroutine SORT

SORT: PUSH EDI Save registers.
PUSH ECX
PUSH EDX
MOV EDI,[EAX] Initialize outer loop index
DEC EDI register EDI to j = n− 1.
ADD EAX,4 Set EAX to contain LIST.

OUTER: MOV ECX,EDI Initialize inner loop index
DEC ECX register to k = j − 1.
MOV EDX,[EAX + EDI * 4] Load LIST(j) into EDX.

INNER: CMP [EAX + ECX * 4],EDX Compare LIST(k) to LIST(j).
JLE NEXT If LIST(k) ≤ LIST(j),

go to next k index entry;
XCHG [EAX + ECX * 4],EDX Otherwise, interchange LIST(k)
MOV [EAX + EDI * 4],EDX and LIST(j), leaving

(new) LIST(j) in EDX.
NEXT: DEC ECX Decrement inner loop index k.

JGE INNER Repeat or terminate inner loop.
DEC EDI Decrement outer loop index j.
JG OUTER Repeat or terminate outer loop.
POP EDX Restore registers.
POP ECX
POP EDI
RET

43

3.70. Use register ESI to keep track of the index position of the largest element
in the inner loop, and use register EDX (DL) to record its value. Register
EBX (BL) is used to hold sublist values to be compared to the current
largest value.

LEA EAX,LIST
MOV EDI,N
DEC EDI

OUTER: MOV ECX,EDI
DEC ECX
MOV ESI,EDI Initial index of largest.
MOV DL,[EAX + EDI] Initial value of largest.

INNER: MOV BL,[EAX + ECX] Get LIST(k) element.
CMP BL,DL Compare to current largest.
JLE NEXT If not larger, check next;
MOV DL,BL Otherwise, update largest
MOV ESI,ECX and update its index.

NEXT: DEC ECX Repeat or terminate
JGE INNER inner loop.
XCHG [EAX + EDI],DL Interchange LIST(j)
MOV [EAX + ESI],DL with LIST([ESI]).
DEC EDI Repeat or terminate
JG OUTER outer loop.

The potential advantage is that the inner loop should execute faster.

3.71. Assume that register ESI points to the first record, and use registers EAX,
EBX, and ECX, to accumulate the three sums.

MOV EAX,0
MOV EBX,0
MOV ECX,0

LOOP: ADD EAX,[ESI + 8] Accumulate scores for test 1.
ADD EBX,[ESI + 12] Accumulate scores for test 2.
ADD ECX,[ESI + 16] Accumulate scores for test 3.
MOV ESI,[ESI + 4] Get link.
CMP ESI,0 Check if done.
JNE LOOP
MOV SUM1,EAX Store sums.
MOV SUM2,EBX
MOV SUM3,ECX

44

3.72. If the ID of the new record matches the ID of the Head record of the
current list, the new record will be inserted as the new Head. If the ID
of the new record matches the ID of a later record in the current list, the
new record will be inserted immediately after that record, including the
case where the matching record is the Tail record. In this latter case, the
new record becomes the new Tail record.

Modify Figure 3.51 as follows:

• Add the following instruction as the first instruction of the subrou-
tine:

INSERTION: MOV EDX, 0 Anticipate successful
insertion of the new
record.

MOV RNEWID,[RNEWREC] (Existing instruction.)

• After the second CMP instruction, insert the following three instruc-
tions:

JNE CONTINUE1 Three new instructions.
MOV EDX,RHEAD
RET

CONTINUE1: JG SEARCH (Existing instruction.)

• After the fourth CMP instruction, insert the following three instruc-
tions:

JNE CONTINUE2 Three new instructions.
MOV EDX,RNEXT
RET

CONTINUE2: JL INSERT (Existing instruction.)

45

3.73. If the list is empty, the result is unpredictable because the first instruction
will compare the ID of the new record to the contents of memory location
zero. If the list is not empty, the following happens. If the contents of
RIDNUM are less than the ID number of the Head record, the Head record
will be deleted. Otherwise, the routine loops until register RCURRENT
points to the Tail record. Then RNEXT gets loaded with zero by the
instruction at LOOPSTART, and the result is unpredictable.

Replace Figure 3.52 with the following code:

DELETION: CMP RHEAD, 0 If the list is empty,
JNE CHECKHEAD return with RIDNUM
RET unchanged.

CHECKHEAD: CMP RIDNUM,[RHEAD] Check if Head record
JNE CONTINUE1 is to be deleted and
MOV RHEAD,[RHEAD + 4] perform deletion if it
MOV RIDNUM,0 is, returning with zero
RET in RIDNUM.

CONTINUE1: MOV RCURRENT,RHEAD Otherwise, continue
searching.

LOOPSTART: MOV RNEXT,[RCURRENT + 4]
CMP RNEXT,0 If all records checked,
JNE CHECKNEXT return with IDNUM
RET unchanged.

CHECKNEXT: CMP RIDNUM,[RNEXT] Check if next record is
JNE CONTINUE2 to be deleted and
MOV RTEMP,[RNEXT + 4] perform deletion if
MOV [RCURRENT + 4],RTEMP it is, returning with
MOV RIDNUM,0 zero in RIDNUM.
RET

CONTINUE2: MOV RCURRENT,RNEXT Otherwise, continue
JMP LOOPSTART the search.

46

