
Chapter 2

Machine Instructions and Programs

2.1. The three binary representations are given as:

Decimal Sign-and-magnitude 1’s-complement 2’s-complement
values representation representation representation

5 0000101 0000101 0000101
−2 1000010 1111101 1111110
14 0001110 0001110 0001110
−10 1001010 1110101 1110110

26 0011010 0011010 0011010
−19 1010011 1101100 1101101

51 0110011 0110011 0110011
−43 1101011 1010100 1010101

2.2. (a)

(a) 00101 (b) 00111 (c) 10010
+ 01010 + 01101 + 01011
——— ——— ———
01111 10100 11101

no overflow overflow no overflow

(d) 11011 (e) 11101 (f) 10110
+ 00111 + 11000 + 10011
——— ——— ———
00010 10101 01001

no overflow no overflow overflow

(b) To subtract the second number, form its 2’s-complement and add it to
the first number.

(a) 00101 (b) 00111 (c) 10010
+ 10110 + 10011 + 10101
——— ——— ———
11011 11010 00111

no overflow no overflow overflow

(d) 11011 (e) 11101 (f) 10110
+ 11001 + 01000 + 01101
——— ——— ———
10100 00101 00011

no overflow no overflow no overflow

1



2.3. No; any binary pattern can be interpreted as a number or as an instruction.

2.4. The number 44 and the ASCII punctuation character “comma”.

2.5. Byte contents in hex, starting at location 1000, will be 4A, 6F, 68, 6E, 73,
6F, 6E. The two words at 1000 and 1004 will be 4A6F686E and 736F6EXX.
Byte 1007 (shown as XX) is unchanged. (See Section 2.6.3 for hex nota-
tion.)

2.6. Byte contents in hex, starting at location 1000, will be 4A, 6F, 68, 6E, 73,
6F, 6E. The two words at 1000 and 1004 will be 6E686F4A and XX6E6F73.
Byte 1007 (shown as XX) is unchanged. (See section 2.6.3 for hex nota-
tion.)

2.7. Clear the high-order 4 bits of each byte to 0000.

2.8. A program for the expression is:

Load A
Multiply B
Store RESULT
Load C
Multiply D
Add RESULT
Store RESULT

2



2.9. Memory word location J contains the number of tests, j, and memory word
location N contains the number of students, n. The list of student marks
begins at memory word location LIST in the format shown in Figure 2.14.
The parameter Stride = 4(j + 1) is the distance in bytes between scores
on a particular test for adjacent students in the list.

The Base with index addressing mode (R1,R2) is used to access the scores
on a particular test. Register R1 points to the test score for student 1,
and R2 is incremented by Stride in the inner loop to access scores on the
same test by successive students in the list.

Move J,R4 Compute and place Stride = 4(j + 1)
Increment R4 into register R4.
Multiply #4,R4
Move #LIST,R1 Initialize base register R1 to the
Add #4,R1 location of the test 1 score for student 1.
Move #SUM,R3 Initialize register R3 to the location

of the sum for test 1.
Move J,R10 Initialize outer loop counter R10 to j.

OUTER Move N,R11 Initialize inner loop counter R11 to n.
Clear R2 Clear index register R2 to zero.
Clear R0 Clear sum register R0 to zero.

INNER Add (R1,R2),R0 Accumulate the sum of test scores in R0.
Add R4,R2 Increment index register R2 by Stride value.
Decrement R11 Check if all student scores on current
Branch>0 INNER test have been accumulated.
Move R0,(R3) Store sum of current test scores and
Add #4,R3 increment sum location pointer.
Add #4,R1 Increment base register to next test

score for student 1.
Decrement R10 Check if the sums for all tests have
Branch>0 OUTER been computed.

3



2.10. (a)

Memory
accesses
————

Move #AVEC,R1 1
Move #BVEC,R2 1
Load N,R3 2
Clear R0 1

LOOP Load (R1)+,R4 2
Load (R2)+,R5 2
Multiply R4,R5 1
Add R5,R0 1
Decrement R3 1
Branch>0 LOOP 1
Store R0,DOTPROD 2

(b) k1 = 1 + 1 + 2 + 1 + 2 = 7; and k2 = 2 + 2 + 1 + 1 + 1 + 1 = 8

2.11. (a) The original program in Figure 2.33 is efficient on this task.

(b) k1 = 7; and k2 = 7

This is only better than the program in Problem 2.10(a) by a small
amount.

2.12. The dot product program in Figure 2.33 uses five registers. Instead of
using R0 to accumulate the sum, the sum can be accumulated directly into
DOTPROD. This means that the last Move instruction in the program can
be removed, but DOTPROD is read and written on each pass through the
loop, significantly increasing memory accesses. The four registers R1, R2,
R3, and R4, are still needed to make this program efficient, and they are
all used in the loop. Suppose that R1 and R2 are retained as pointers to
the A and B vectors. Counter register R3 and temporary storage register
R4 could be replaced by memory locations in a 2-register machine; but
the number of memory accesses would increase significantly.

2.13. 1220, part of the instruction, 5830, 4599, 1200.

4



2.14. Linked list version of the student test scores program:

Move #1000,R0
Clear R1
Clear R2
Clear R3

LOOP Add 8(R0),R1
Add 12(R0),R2
Add 16(R0),R3
Move 4(R0),R0
Branch>0 LOOP
Move R1,SUM1
Move R2,SUM2
Move R3,SUM3

2.15. Assume that the subroutine can change the contents of any register used
to pass parameters.

Subroutine

Move R5,−(SP) Save R5 on stack.
Multiply #4,R4 Use R4 to contain distance in

bytes (Stride) between successive
elements in a column.

Multiply #4,R1 Byte distances from A(0,0)
Multiply #4,R2 to A(0,x) and A(0,y)

placed in R1 and R2.
LOOP Move (R0,R1),R5 Add corresponding

Add R5,(R0,R2) column elements.
Add R4,R1 Increment column element
Add R4,R2 pointers by Stride value.
Decrement R3 Repeat until all
Branch>0 LOOP elements are added.
Move (SP)+,R5 Restore R5.
Return Return to calling program.

5



2.16. The assembler directives ORIGIN and DATAWORD cause the object pro-
gram memory image constructed by the assembler to indicate that 300 is
to be placed at memory word location 1000 at the time the program is
loaded into memory prior to execution.

The Move instruction places 300 into memory word location 1000 when
the instruction is executed as part of a program.

2.17. (a)

Move (R5)+,R0
Add (R5)+,R0
Move R0,−(R5)

(b)

Move 16(R5),R3

(c)

Add #40,R5

6



2.18. (a) Wraparound must be used. That is, the next item must be entered at
the beginning of the memory region, assuming that location is empty.

(b) A current queue of bytes is shown in the memory region from byte
location 1 to byte location k in the following diagram.

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

Current queue
of bytes

Increasing addresses

INOUT

1 k

. . .. . .

The IN pointer points to the location where the next byte will be appended
to the queue. If the queue is not full with k bytes, this location is empty,
as shown in the diagram.

The OUT pointer points to the location containing the next byte to be
removed from the queue. If the queue is not empty, this location contains
a valid byte, as shown in the diagram.

Initially, the queue is empty and both IN and OUT point to location 1.

(c) Initially, as stated in Part b, when the queue is empty, both the IN
and OUT pointers point to location 1. When the queue has been filled
with k bytes and none of them have been removed, the OUT pointer still
points to location 1. But the IN pointer must also be pointing to location
1, because (following the wraparound rule) it must point to the location
where the next byte will be appended. Thus, in both cases, both pointers
point to location 1; but in one case the queue is empty, and in the other
case it is full.

(d) One way to resolve the problem in Part (c) is to maintain at least one
empty location at all times. That is, an item cannot be appended to the
queue if ([IN] + 1) Modulo k = [OUT]. If this is done, the queue is empty
only when [IN] = [OUT].

(e) Append operation:

• LOC ← [IN]

• IN ← ([IN] + 1) Modulo k

• If [IN] = [OUT], queue is full. Restore contents of IN to contents of
LOC and indicate failed append operation, that is, indicate that the
queue was full. Otherwise, store new item at LOC.

7



Remove operation:

• If [IN] = [OUT], the queue is empty. Indicate failed remove operation,
that is, indicate that the queue was empty. Otherwise, read the item
pointed to by OUT and perform OUT ← ([OUT] + 1) Modulo k.

2.19. Use the following register assignment:

R0 − Item to be appended to or removed from queue

R1 − IN pointer

R2 − OUT pointer

R3 − Address of beginning of queue area in memory

R4 − Address of end of queue area in memory

R5 − Temporary storage for [IN] during append operation

Assume that the queue is initially empty, with [R1] = [R2] = [R3].

The following APPEND and REMOVE routines implement the proce-
dures required in Part (e) of Problem 2.18.

APPEND routine:

Move R1,R5
Increment R1 Increment IN pointer
Compare R1,R4 Modulo k.
Branch≥0 CHECK
Move R3,R1

CHECK Compare R1,R2 Check if queue is full.
Branch=0 FULL
MoveByte R0,(R5) If queue not full, append item.
Branch CONTINUE

FULL Move R5,R1 Restore IN pointer and send
Call QUEUEFULL message that queue is full.

CONTINUE . . .

REMOVE routine:

Compare R1,R2 Check if queue is empty.
Branch=0 EMPTY If empty, send message.
MoveByte (R2)+,R0 Otherwise, remove byte and
Compare R2,R4 increment R2 Modulo k.
Branch≥0 CONTINUE
Move R3,R2
Branch CONTINUE

EMPTY Call QUEUEEMPTY
CONTINUE . . .

8



2.20. (a) Neither nesting nor recursion are supported.

(b) Nesting is supported, because different Call instructions will save the
return address at different memory locations. Recursion is not supported.

(c) Both nesting and recursion are supported.

2.21. To allow nesting, the first action performed by the subroutine is to save
the contents of the link register on a stack. The Return instruction pops
this value into the program counter. This supports recursion, that is,
when the subroutine calls itself.

2.22. Assume that register SP is used as the stack pointer and that the stack
grows toward lower addresses. Also assume that the memory is byte-
addressable and that all stack entries are 4-byte words. Initially, the stack
is empty. Therefore, SP contains the address [LOWERLIMIT] + 4. The
routines CALLSUB and RETRN must check for the stack full and stack
empty cases as shown in Parts (b) and (a) of Figure 2.23, respectively.

CALLSUB Compare UPPERLIMIT,SP
Branch≤0 FULLERROR
Move RL,−(SP)
Branch (R1)

RETRN Compare LOWERLIMIT,SP
Branch>0 EMPTYERROR
Move (SP)+,PC

2.23. If the ID of the new record matches the ID of the Head record of the
current list, the new record will be inserted as the new Head. If the ID
of the new record matches the ID of a later record in the current list, the
new record will be inserted immediately after that record, including the
case where the matching record is the Tail record. In this latter case, the
new record becomes the new Tail record.

Modify Figure 2.37 as follows:

• Add the following instruction as the first instruction of the subrou-
tine:

INSERTION Move #0, ERROR Anticipate successful
insertion of the new record.

Compare #0, RHEAD (Existing instruction.)

9



• After the second Compare instruction, insert the following three in-
structions:

Branch6=0 CONTINUE1 Three new instructions.
Move RHEAD, ERROR
Return

CONTINUE1 Branch>0 SEARCH (Existing instruction.)

• After the fourth Compare instruction, insert the following three in-
structions:

Branch6=0 CONTINUE2 Three new instructions.
Move RNEXT, ERROR
Return

CONTINUE2 Branch<0 INSERT (Existing instruction.)

2.24. If the list is empty, the result is unpredictable because the first instruction
will compare the ID of the new record to the contents of memory location
zero. If the list is not empty, the following happens. If the contents of
RIDNUM are less than the ID number of the Head record, the Head record
will be deleted. Otherwise, the routine loops until register RCURRENT
points to the Tail record. Then RNEXT gets loaded with zero by the
instruction at LOOP, and the result is unpredictable.

Replace Figure 2.38 with the following code:

DELETION Compare #0, RHEAD If the list is empty,
Branch6=0 CHECKHEAD return with RIDNUM unchanged.
Return

CHECKHEAD Compare (RHEAD), RIDNUM Check if Head record
Branch6=0 CONTINUE1 is to be deleted and
Move 4(RHEAD), RHEAD perform deletion if it
Move #0, RIDNUM is, returning with zero
Return in RIDNUM.

CONTINUE1 Move RHEAD, RCURRENT Otherwise, continue searching.
LOOP Move 4(CURRENT), RNEXT

Compare #0, RNEXT If all records checked,
Branch6=0 CHECKNEXT return with IDNUM unchanged.
Return

CHECKNEXT Compare (RNEXT), RIDNUM Check if next record is
Branch6=0 CONTINUE2 to be deleted and perform
Move 4(RNEXT), RTEMP deletion if it is,
Move RTEMP, 4(RCURRENT) returning with zero
Move #0, RIDNUM in RIDNUM.
Return

CONTINUE2 Move RNEXT, RCURRENT Otherwise, continue
Branch LOOP the search.

10


