
Chapter 12 – Large Computer Systems

12.1. A possible program is:

LOOP Move 0,STATUS
Move CURRENT,R1
Move R1,R2
Move R1,Rnet
Shift right Rnet
Add Rnet,R2 Add current value from left
Move R1,Rnet
Shift left Rnet
Add Rnet,R2 Add current value from right
Move R1,Rnet
Shift up Rnet
Add Rnet,R2 Add current value from below
Move R1,Rnet
Shift down Rnet
Add Rnet,R2 Add current value from above
Divide 5,R2 Average all five values
Move R2,CURRENT
Subtract R2,R1
Absolute R1
Subtract EPSILON,R1
Skip if≥0
Move 1,STATUS

{Control processor ANDs all STATUS flags and exits LOOP if result is 1;
otherwise, LOOP is repeated.}

END LOOP

12.2. Assume that each bus has 64 address lines and 64 data lines. There are two cases
to consider.

i) For uncached reads, each read with a split-transaction bus requires 2T , con-
sisting of 1T to send the address to memory and 1T to transfer the data to the
processor. Using a conventional bus, it takes 6T because of the 4T delay in
reading the contents of the memory. Therefore, 3 conventional buses would give
approximately the same performance as the split-transaction bus.

ii) For cached reads, it is necessary to consider the size of the cache block.
Assume that this size is 64 bytes; therefore, it takes 8 clock cycles to transfer an
entire block over the bus.

1



Using a split-transaction bus it is possible to use all cycles to transfer either read
requests (addresses) or data; therefore, it takes 9T per read (not in consecutive
clock cycles!). Using a conventional bus each read takes 13T (consecutive clock
cycles). Thus, 4 of these 13 cycles are wasted waiting for the memory response.
This means that in this case also it would be necessary to use 3 conventional
buses to obtain approximately the same performance.

12.3. The performance would not improve by a factor of 4, because some bus transac-
tions involve uncached reads and writes. Since uncached accesses involve only
one word of data, they use only one quarter of the 4-word wide bus. Of course,
the overall performance would depend on the ratio of cached and uncached ac-
cesses.

12.4. Assume n is a power of 2 because of the form of the shuffle network.

Crossbar cost = n2.

Shuffle network cost = 2(n/2)log
2
n.

Solving for smallest n satisfying n2 ≥ 5[2(n/2)log
2
n] where n is a power of 2,

gives n ≥ 5log2n. At n = 16, inequality is not satisfied. At n = 32, inequality is
satisfied. Therefore, the smallest n is 32.

12.5. The network is

Note that the definition of the shuffle pattern must be generalized in such a way
that for each source input there is a path (in fact, exactly one path) to each desti-
nation output.

Cost of network built from 2× 2 switches is (n/2)log2n.

Cost of network built from 4× 4 switches is 4(n/4)log
4
n = n(log

2
n/log

2
4) =

(n/2)log2n.

Therefore, the cost of the two types of networks is the same.

2



Blocking probability: The 4 × 4 switch is a nonblocking crossbar, and can be
built from 2× 2 switches as

But this is a blocking network. Therefore, the blocking probability of a large
network built from 4× 4 switches is lower than one built from 2× 2 switches.

12.6. Program structure:

Sequential segment S1 (k time units)
PAR segment P1 (1 time unit)
Sequential segment S2 (k time units)
PAR segment P2 (1 time unit)
Sequential segment S3 (k time units)

T1 = 3k + 2k
Tn = 3k + 2d(k/n)e
Speedup = (5k)/(3k + 2d(k/n)e)

Limiting value for speedup is 5/3. This shows that the sequential segments of a
program severely limit the speedup when the sequential segments take about the
same time to execute as the time taken to execute the PAR segments on a single
processor.

12.7. The n-dimensional hypercube is symmetric with respect to any node. The dis-
tance between nodes x and y is the number of bit positions that are different
in their binary addresses. The number of nodes that are k hops away from any
particular node is (n

k
). Therefore, the average distance a message travels is

[

n∑

k=1

k · (n

k )]/(2n − 1)

which simplifies to [2n−1 · n]/(2n − 1), and is less than (1 + n)/2, as can be
verified by trying a few values. For large n, the average distance approaches n/2.

12.8. When a Test-and-Set instruction “fails,” that is, when the lock was already set,
the task should call the operating system to have its task name queued and to
allow some other task to execute. When the task holding the lock wishes to
release the lock (set it to 0), the task calls the operating system to do so, and then
the operating system dequeues and runs one of the waiting tasks which is then

3



the one owning the lock. If no task is waiting, the lock is cleared (= 0) to the free
state.

12.9. The details of how either invalidation or updating can be implemented are de-
scribed in Section 12.6.2, and the advantages/disadvantages of the two tech-
niques can be deduced directly from that discussion. In general, it would seem
that invalidation and write-back of dirty variables results in less bus traffic and
eliminates potentially wasted cache updating operations. However, cache hit
rates may be lowered by using this strategy. Updating associated with a write
through policy may lead to higher hit rates and may be simpler to implement,
but may cause unacceptably high bus traffic and wasted update operations. The
details of how reads and writes on shared cached blocks (lines) are normally
interleaved from distinct processors in some class of applications will actually
determine which coherence strategy is most appropriate.

12.10. No. If coherence controls are not used, a shared variable in cache B may not get
updated/invalidated when it is written to in cache A while A’s processor has mu-
tually exclusive access. Later, when B’s processor acquires mutually exclusive
access, the variable will be incorrect.

12.11. In Figure 12.18, both threads continuously write the same shared variable dot product;
hence, this is done serially. In Figure 12.19, each thread updates its local variable
local dot product, which is done in parallel. Therefore, if very large vectors are
used (so that the actual computation of the dot product dominates the processing
time), the program in Figure 12.19 may give almost twice as good performance
as the program in Figure 12.18.

12.12. It is only necessary to create 3 new threads (rather than just one in Figure 12.19),
and assign processing of one quarter of each vector to each thread.

12.13. The only significant modification is for the program with id = 0 to send one
quarter of each vector to programs with id = 1, 2, 3. Having completed the dot-
product computation, each program with id > 0 sends the result to the program
with id = 0, which then prints the final result.

12.14. Overhead in creating a thread is the most significant consideration. Other over-
head is encountered in the lock and barrier mechanisms. Assume that the thread
overhead is 300 times greater than the execution time of the statement that com-
putes the new value of the dot product for a given value of k. Also, assume that
the overhead for lock and barrier mechanisms is only 10 times greater.

Then, as a rough approximation, the vectors must have at least 320 × 2 = 640
elements before any speedup will be achieved.

12.15. The dominant factor in message passing is the overhead of sending and receiving
messages. Assume that the overhead of either sending or receiving a message is
1000 times greater than the execution time of the statement that computes the
new value of the dot product for a given value of k. Then, since there are 3

4



send and 3 receive messages involved, the vectors will have to have at least
1000× 6 = 6000 elements before any speedup is achieved.

Note that we have assumed that the overhead of 1000 is independent of the size
of the message – as a first order approximation.

12.16. The shared-memory multiprocessor can emulate the message-passing multicom-
puter easier than the other way around. The act of message-passing can be im-
plemented by the transfer of (message) buffer pointers or complete (message)
buffers between the two communicating processes that otherwise only operate in
their own assigned area of main memory. A multicomputer system can emulate
a multiprocessor by considering the aggregate of all of the local memories of the
individual computers as the shared memory of the multiprocessor. Access from
a computer to a nonlocal component of the shared memory can be facilitated by
passing messages between the two computers involved. This is a cumbersome
and slow process.

12.17. The situation described is possible. Consider stations A, B, and C, situated at the
left end, middle, and right end of the bus, respectively. Station A starts to send a
message packet of 0.25 τ duration to destination station B at time t0. The packet
is observed and copied into station B during the interval [t0 + 0.5τ, t0 + 0.75τ ].
Just before t0 + τ , station C begins to transmit a packet to some other station.
It immediately collides with A’s packet, and the garbled signal arrives back at
station A just before t0 + 2τ .

12.18. (a) The F/E bit is tested. If it is 1 (denoting ”full”), then the contents of BOXLOC
are loaded into register R0, F/E is set to 0 (denoting “empty”), and execution
continues with the next sequential instruction. Otherwise (i.e., for [F/E] = 0),
no operations are performed and execution control is passed to the instruction at
location WAITREC.

(b) In the multiprocessor system with the mailbox memory, each one-word mes-
sage is sent from T1 to T2 by using the single instructions:

SEND PUT R0,BOXLOC,SEND (1)
and

REC GET R0,BOXLOC,REC (2)

in tasks T1 and T2, respectively, assuming that [F/E] = 0 initially.

In the system without the mailbox memory, replace (1) in task T1 with the se-
quence:

WLOCK TAS.B WRITE
BMI WLOCK
MOV.W R0,LOC
CLR.B READ

and replace (2) in task T2 with the sequence:

5



RLOCK TAS.B READ
BMI RLOCK
MOV.W LOCK,R0
CLR.B WRITE

Let the notation V(7) stand for bit b7 of byte location V. Ordinary word lo-
cation LOC represents the data field of mailbox location BOXLOC, and the
combination of WRITE(7) and READ(7) represents the F/E bit associated with
BOXLOC.

In particular, [WRITE(7)] = 0 means that LOC is empty, and [READ(7)] = 0
means that LOC is full.

Initially, when LOC is empty, the settings must be [WRITE(7)] = 0 and [READ(7)]
= 1. Note that when the instruction MOV.W is being executed in either task, we
have [WRITE(7)] = [READ(7)] = 1, indicating that LOC is either being filled or
emptied. Also note that it is never the case that [WRITE(7)] = [READ(7)] = 0.
This solution works correctly for the general case where a number of tasks pass
data through LOC.

For the case suggested in the problem, with a single task T1 and a single task
T2, the following sequences are sufficient. In T1, use:

TESTW TST.B FULL
BNE TESTW
MOV.W R0,LOC
MOV.B #1,FULL

In T2 use:

TESTR TST.B FULL
BEQ TESTR
MOV.W LOC,R0
CLR.B FULL

In this case, FULL plays the role of the F/E bit of BOXLOC (with [FULL] = 0
initially), and the TAS instruction is not needed.

6


