
Chapter 11

Processor Families

11.1. The main ideas of conditional execution of ARM instructions (see Sections 3.1.2
and B.1) and conditional execution of IA-64 instructions, called predication (see
Section 11.7.2), are very similar.

The differences occur in the way that the conditions are set and stored in the
processor, and in the way that they are referenced by the conditionally executed
instructions.

In ARM processors, the state is stored in four conventional condition code flags
N, Z, C, and V (see Section 3.1.1). These flags are optionally set by the results
of instruction execution. The particular condition, which may be a function of
more than one flag, is named in the condition field of each ARM instruction (see
Figure B.1 and Table B.1).

In the IA-64 architecture, there are no conventional condition code flags. In-
stead, the result (true or false) of executing a Compare<condition> instruction
is stored in one of 64 one-bit predicate registers, as described in Section 11.7.2.
Each instruction can name one of these bits in its 6-bit predicate field; and the
instruction is executed only if the bit is 1 (true).

1



11.2. Assume that Thumb arithmetic instructions have a 2-operand format, expressed
in assembly language as

OP Rdst,Rsrc

as discussed in Section 11.1.1

Also assume that a signed integer Divide instruction (DIV) is available in the
Thumb instruction set with the assembly language format

DIV Rdst,Rsrc

This instruction performs the operation [Rdst]/[Rsrc]. It stores the quotient in
Rdst and stores the remainder in Rsrc.

Under these assumptions, a possible Thumb program would be:

LDR R0,G
LDR R1,H
ADD R0,R1 Leaves g + h in R0.
LDR R1,E
LDR R2,F
MUL R1,R2 Leaves e× f in R1.
DIV R1,R0 Leaves (e× f)/(g + h) in R1.
LDR R0,C
LDR R2,D
DIV R0,R2 Leaves c/d in R0.
ADD R0,R1 Leaves denominator in R0.
LDR R1,A
LDR R2,B
ADD R1,R2 Leaves a + b in R1.
DIV R1,R0 Leaves result in R1.
STR R1,W Stores result in w.

This program requires 16 instructions as compared to 13 instruction words (some
combined instructions) in the HP3000.

2



11.3. The following table shows some of the important areas for similarity/difference
comparisons.

MOTOROLA 680X0 INTEL 80X86

8 Data registers and 8 Address 8 General registers (including
registers (including a a processor stack register)
processor stack register)

CISC instruction set with CISC instruction set with
flexible addressing modes flexible addressing modes

Large instruction set with Large instruction set with
multiple-register load/store multiple-register push/pop
instructions instructions

Memory-mapped I/O only Separate I/O space as well as
memory-mapped I/O

Flat address space Segmented address space

Big-endian addressing Little-endian addressing

There is roughly comparable capability and performance between pairs from
these two families; that is 68000 vs. 8086, 68020 vs. 80286, 68030 vs. 80386,
and 68040 vs. 80486. The cache and pipelining aspects for the high end of each
family are summarized in Sections 11.2.2 and 11.3.3.

11.4. An instruction cache is simpler to implement, because its entries do not have to
be written back to the main memory. A data cache must have a provision for writ-
ing any changed entries back to the memory, before they are overwritten by new
entries. ¿From a performance standpoint, a single larger instruction cache would
be advantageous only if the frequency of memory data accesses were very low.
A unified cache has the potential performance advantage that the proportions of
instructions and data vary automatically as a program is executed. However, if
separate instruction and data caches are used, they can be accessed in parallel in
a pipelined machine; and this is the major performance advantage.

11.5. Memory-mapped I/O requires no specialized support in terms of either instruc-
tions or bus signals. A separate I/O space allows simpler I/O interfaces and
potentially faster operation. Processors such as those in the IA-32 family, that
have a separate I/O space, can also use memory-mapped I/O.

3



11.6. MOTOROLA - The Autoincrement and Autodecrement modes facilitate stack
implementation and accessing successive items in a list. Significant flexibility
in accessing structured lists and arrays of addresses and data of different sizes
is provided by the displacement, offset, and scale factor features, coupled with
indirection.

INTEL - Relocatability in the physical address space is facilitated by the way
in which base, index and displacement features are used in generating virtual
addresses. As in the Motorola processors, these multiple-component address
features enable flexible access to address lists and data structures.

In both families of processors, byte-addressability enables handling of character
strings, and the Intel IA-32 String instructions (see Sections 3.21.3 and D.4.1)
facilitate movement and processing of byte and doubleword data blocks. The
Motorola MOVEM and MOVEP instructions perform similar operations.

11.7. Flat address space — Simplest configuration from the standpoint of a single user
program and its compilation.

One or more variable-length segments — Efficient allocation of available mem-
ory space to variable-length user or operating system programs.

Paged memory — Facilitates automated memory management between the random-
access main memory and a sector-organized disk secondary memory (see Chap-
ters 5 and 10). Access privileges can be controlled on a page-by-page basis
to ensure protection among users, and between users and the operating system
when shared data are involved.

Segmentation and paging — Most flexible arrangement for managing multiple
user and system address spaces, including protection mechanisms. The virtual
address space can be significantly larger than the physical main memory space.

4



11.8. ARM program:

Assume that a signed integer Divide instruction is available in the ARM instruc-
tion set, and that it has the same format as the Multiply (MUL) instruction (see
Figure B.4). The assembly language expression for the Divide (DIV) instruction
is

DIV Rd,Rm,Rs

and it performs the operation [Rm]/[Rs], loading the quotient into Rm and the
remainder into Rd.

LDR R0,C
LDR R1,D
DIV R2,R0,R1 Leaves c/d in R0.
LDR R1,G
LDR R2,H
ADD R1,R1,R2 Leaves g + h in R1.
LDR R2,F
DIV R3,R2,R1 Leaves f/(g + h) in R2.
LDR R3,E
MLA R1,R2,R3,R0 Leaves denominator in R1.
LDR R0,A
LDR R2,B
ADD R0,R0,R2 Leaves a + b in R0.
DIV R2,R0,R1 Leaves result in R0.
STR R0,W Stores result in w.

This program requires 15 instructions as compared to 13 instruction words (some
combined instructions) in the HP3000.

5



68000 program (assume 16-bit operands):

MOVE G,D0
ADD H,D0 Leaves g + h in D0.
MOVE E,D1
MULS F,D1 Leaves e× f in D1.
DIVS D0,D1 Leaves (e× f)/(g + h) in D1.
MOVE C,D0
EXT.L D0 See Note below.
DIVS D,D0 Leaves c/d in D0.
ADD D1,D0 Leaves denominator in D0.
MOVE A,D1
ADD B,D1
EXT.L D1 See Note below.
DIVS D0,D1 Leaves result in D1.
MOVE D1,W Stores result in w.

Note: The EXT.L instruction sign-extends the 16-bit dividend in the destination
register to 32 bits, a requirement of the Divide instruction.

This program contains 14 instructions, as compared to 13 instruction words
(some combined instructions) in the HP3000.

IA-32 program:

MOV EBX,G
ADD EBX,H Leaves g + h in EBX.
MOV EAX,E
IMUL EAX,F Leaves e× f in EAX.
CDQ See Note below.
IDIV EBX
MOV EBX,EAX Leaves (e× f)/(g + h) in EBX.
MOVE EAX,C
CDQ See Note below.
IDIV D Leaves c/d in EAX.
ADD EBX,EAX Leaves denominator in EBX.
MOVE EAX,A
ADD EAX,B Leaves a + b in EAX.
CDQ See Note below.
IDIV EBX Leaves result in EAX.
MOV W,EAX Stores result in w.

Note: The CDQ instruction sign-extends EAX into EDX (see Section 3.23.1), a
requirement of the Divide instruction.

This program contains 16 instructions, as compared to 13 instruction words
(some combined instructions) in the HP3000.

6



11.9. A 4-way multiplexer is required, as shown in the following figure.

_ _

datapath out
low-order byte

32-bit
datapath in

4-way multiplexer MUX

8 888

11.10. There are no direct counterparts of the memory stack pointer registers SP and FP
in the IA-64 architecture. The register remapping hardware in IA-64 processors
allows the main program and any sequence of nested subroutines to all use logi-
cal register addresses R32 and upward for their own local variables, with the first
part of that register space containing parameters passed from the calling routine.
An example of this is shown in Figure 11.4.

If the 92 registers of the stacked physical register space are used up by register
allocations for a sequence of nested subroutine calls, then some of those physical
registers must be spilled into memory to create physical register space for any
additional nested subroutines. The memory pointer register used by the proces-
sor for that memory area could be considered as a counterpart of SP; but it is not
actually used as a TOS pointer by the current routine. In fact, it is not visible to
user programs.

7



11.11. Consider the example of a main program calling a subroutine, as shown in Fig-
ure 11.4. The physical register addresses of registers used by the main program
are the same as the logical register addresses used in the main program instruc-
tions. However, the logical register addresses above 31 used by instructions in
the subroutine must have 8 added to them to generate the correct physical register
addresses.

The value 8 is the first operand in the Alloc 8,4 instruction executed by the main
program. When that instruction is executed, the value 8 is stored in a processor
state register associated with the main program. After the subroutine is entered,
all logical register addresses above 31 issued by its instructions must be added,
in a small adder, to the value (8) in that register. The output of this adder is the
physical register address to be used while in the subroutine.

The operand 7 in the Alloc 7,3 instruction executed by the subroutine is stored
in a second processor state register associated with the subroutine. The output of
that register is added in a second adder to the output of the first adder. After the
subroutine calls a second subroutine, logical register addresses above 31 issued
by the second subroutine are sent into the first adder. The output of the second
adder (logical address + 8 + 7) is the physical register address used while in the
second subroutine.

More register/adder pairs are cascaded onto this structure as more subroutines
are called. Note that logical register addresses above 31 are always applied to
the first adder; and the output of the nth adder is the physical register address
to be used in the nth subroutine. All registers and adders are only 7 bits wide
because the largest physical register address that needs to be generated is 127.

8



11.12. Considering cacheing effects only, the average access time over both instruction
and data accesses is a function of both cache hit rates and miss penalties (see
Sections 5.6.2 and 5.6.3 for general expressions for average access time).

The hit rates in the 21264 L1 caches will be much higher than in the 21164 L1
caches because the 21264 caches are eight times larger. Therefore, the average
access time for accesses that can be made on-chip will be larger in the 21164
because of the miss penalty in going to its on-chip L2 cache.

Next, we need to consider the effect on average access time of going to the off-
chip caches in each system. The total on-chip cache capacity (112K bytes in
the 21164 and 128K bytes in the 21264) is about the same in both the systems.
Therefore, we can assume about the same hit rate for on-chip accesses; so the
effect on average access time of the miss penalties in going to the off-chip caches
will be about the same in each system.

Finally, if the off-chip caches have about the same capacity, the effect on average
access times of the miss penalties in going to the main DRAM memories will be
about the same in each sytem.

The net result is that average access times in the 21264 should be shorter than in
the 21164, leading to faster program execution, primarily because of the different
arrangements of the on-chip caches.

11.13. HP3000 program:

LOAD A
LOAD B
MPYM C
LOAD D
MPYM E
ADD
LOAD F
MPYM G
LOAD H
MPYM I
DIV
DEL Combined with previous

instruction.
ADD
MPY Combined with previous

instruction.
STOR W

9



11.14. Procedurei generates 8 words of data, Procedurej generates 10 words of data,
and Procedurek generates 3 words of data. Then, the top words in the stack have
the following contents:

_ _

TOS

[SR]i

Return addressi

[Indexreg.]i

12

14

∆Qi

DI1 − DI8

[Indexreg.] j

Return address j

[SR]j

[Indexreg.]k

Return addressk

[SR]k

DJ1 − DJ10

12

14

DK2

DK3

DK1

�

��

�

10



11.15. HP3000 program:

LOAD A
ADDM B
LOAD C
ADDM D
MPY
LOAD D
MPYM E
ADD
STOR W

ARM program:

LDR R0,A
LDR R1,B
ADD R0,R0,R1
LDR R1,C
LDR R2,D
ADD R1,R1,R2
LDR R3,E
MUL R2,R2,R3
MLA R0,R0,R1,R2
STR R0,W

68000 program (assume 16-bit operands):

MOVE A,D0
ADD B,D0
MOVE C,D1
ADD D,D1
MULS D1,D0
MOVE D,D1
MULS E,D1
ADD D1,D0
MOVE D0,W

11



IA-32 program:

MOV EAX,A
ADD EAX,B
MOV EBX,C
ADD EBX,D
IMUL EAX,EBX
MOV EBX,D
IMUL EBX,E
ADD EAX,EBX
MOV W,EAX

11.16. Four

11.17. Four and two

12


