Department of Computer Science Exam Computer Graphics
Vrije Universiteit Exam code: 4001061
Dr. T. Kielmann, Dr. F. Seinstra 15-02-2010

This is a “closed book” exam.
No printed materials or electronic devices are admitted for use during the exam.
You are supposed to answer the questions in English.

Wishing you lots of success with the exam!

Points per question (maximum)
Q|1 2 3 4 5 6 7 8
a b cjla b c|la b c d e|a bla b cla b c|a b|la b
P2 3 3|3 2 3|4 4 4 3 3|5 53 4 4(3 6 2|5 8|3 8
Total: 90 To pass the exam, it is sufficient to get at least 45 points.

1. Pipeline Architectures

a) The workings of OpenGL and other graphics systems is based on a so-called “pipeline ar-
chitecture”. The pipeline converts vertices into pixels that appear on screen. Name the 4
major parts of the pipeline architecture.

b) A vertex defined using OpenGL typically will go through 5 transformations. These trans-
formations constitute changes in frames (or: coordinate systems). Name the 6 consecutive
frames (coordinate systems) used in the pipeline.

¢) What is the most important benefit of the pipeline architecture, and for what specific reason
does this benefit take effect?

2. Texture Mapping

a) Roughly speaking, texture mapping associates a discrete texel with each point on a geometric
object. Name at least 3 problems that can occur with mapping textures, and explain each of
the problems in reasonable detail.

b) Mapping of 2-dimensional textures to non-flat 3-dimensional surfaces can be quite complex.
Describe a two-step solution that can simplify the mapping.

¢) In step two of the solution of part b) above there are many choices possible for the final
mapping of texture values onto the target surface. Describe 3 possible approaches.

3. Shearing

Figure 1 shows a cube, as well as a version of the same cube sheared along the x-axis (relative to
the y-axis). Figure 2 shows how this shear along the x-axis is characterized, given a single angle
6. It also presents the related shearing matrix.

.

Yy Y y

)
1 coté 00
0 1 00
H0) =14 o 10

- X —— -
/ 0 0 01
zZ ‘f
Figure 1 Figure 2

a) Implement a Java method that manipulates OpenGL’s Current Transformation Matrix by
way of the shearing matrix H,(9):

public void shearX relativetoY(float theta) {
// Your implementation should follow here.
/l Pure Java is preferred; Java-like or C-like pseudo code is fine, too.

b) Give pictorial characterizations similar to Figure 2 (left) for shearing along the y-axis (rela-
tive to the z-axis), and shearing along the z-axis (relative to the x-axis), using angles « and
0 respectively.

¢) Write down the transformation matrices for the two transformations of part b) above.

d) Write down a single shearing matrix that combines the effects of the three shearings of Figure
2 and question part b) above.

e) Suppose we have implementations available for methods
shearX_relativetoY, shearY _relativetoZ, and shearZ_relativetoX:
is it possible to implement a single method shearXYZ_relativetoYZX(theta, alpha, beta) by a
combination of calls to the first three methods? If not: why not? If so: how?

4. Scene Graphs

In a program, scene graphs shall be built from objects of a class Node; all specific classes of nodes
(geometric objects, transformations, lights, material properties, etc.) are supposed to be subclasses
of Node. The scene graph shall be organized as a left-child, right-sibling tree. Here is a (partial)
implementation of a Java class Node:

abstract public class Node ({
private Node LeftChild;
private Node RightSibling;

public Node () { setLeftChild(null); setRightSibling(null); }
public void addChild(Node child) {
child.setRightSibling(getLeftChild())
setLeftChild (child);
}
abstract public void render(GL gl);
public void traverse (GL gl){ // not shown here
}
public void setLeftChild(Node leftChild) { LeftChild = leftChild; }
public Node getLeftChild() { return LeftChild; }
public void setRightSibling(Node rightSibling) { RightSibling = rightSibling; }
public Node getRightSibling() { return RightSibling; }

a) Implement the method Traverse of class Node.

b) Here is a (partial) implementation of a Java class Square:

public class Square extends Node({
double radius;
public Square(double radius){ this.radius = radius; }

public void render (GL gl) {
// renders a square centered at the origin, in the plane z=0

Implement its render method such that the square will be centered at the origin, being in
the plane z = 0.

Where necessary, use OpenGL calls. Please use Java syntax, or pseudo code close to Java.

5. Viewports

a) Explain the terms viewport and aspect ratio. Give a formula that expresses the aspect ratio
for a given viewport.

b) Assume, an OpenGL application shall maintain the aspect ratio of its output a,, even when a
user resizes the window. In that case, the application shall use the maximal possible viewport
that maintains a, and that still fits into the reshaped window with its aspect ratio a,,.

The viewport shall be centered in the window.

Given a, and a,, how many different cases have to be distinguished for finding such a
maximal viewport? For each case, draw a simple sketch that shows the window, the viewport,
and their respective width and height!

¢) Write an implementation in Java-like syntax of the reshape method (using OpenGL) that
selects the viewport according to part b) above.

public void reshape (GLAutoDrawable d, int ww, int wh) {
// Your implementation should follow here.
// Pure Java is preferred; Java-like or C-like pseudo code is fine, too.
// Note: 'ww’ and ‘wh’ represent width and height of the display window.

6. Ray Tracing
a) Explain how images are created using the ray tracing technique.

b) Look at the rays denoted A to F in the following picture! What happens to each ray and how
does it contribute to the image created in the camera?

¢) What is the most important disadvantage of ray tracing because of which it is not used, for
example, by OpenGL?

7. Viewing

a) In the OpenGL rendering pipeline, the Current Transformation Matrix (CTM) consists of
two parts. Which are they? What is their respective role for the rendering process? To which
of the two should the function gluLookAt () be applied to? (say why!)

b) The function gluLookAt (eyex, eyey, eyez, lookx, looky, lookz, upx, upy, upz)
internally uses a u-v-n viewing coordinate system:

up

n = eye — look
u = upxn
V = nxu

ook

gluLookAt first normalizes 7, u, v to unit length and then uses the normalized vectors to
build up the viewing matrix:

Up Uy U, dg
Vp Uy U, dy
Ng Ny N, d,
0 0 0 1
Show that 4, v, n are mutually perpendicular (orthogonal)!

Show that the matrix V' properly converts object coordinates to eye coordinates by demon-
strating that it maps eye to the origin (0,0,0,1)7, u to (1,0,0,0)%, v to (0,1,0,0)7, and n
to (0,0, 1,0)7!

Hint: cos0 =1

V= (dg, dy, d,) = (—eye - u, —eye - v, —eye - n)

8. Bresenham’s Algorithm

a) What is the fundamental idea behind Bresenham’s line drawing algorithm that reduces the
necessary computation per pixel?

b) Using Bresenham’s algorithm, implement a function draw_l1ine (x0, y0,x1,y1) that
draws a line from individual pixels, where the starting pointis (x0, y0) and the end point is
(x1,y1l). Your function should work for all lines with slope m for which holds 0 < m < 1.
For drawing an individual pixel (x, y), use the functionvoid plot (int x, int y).

Hint: It is OK to use floating point arithmetic for your function.

