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IMPORTANT

This exam has two different types of multiple choice questions. I expect answers to be as
follows.

• “show why it is the correct answer”: Report your choice and then fully derive
why that answer is the correct one. Make sure to show all your steps.

• “explain why the other answers perform worse”: Report your choice and then
explain for each of the other alternatives why it is a worse idea than your choice.

Good luck!
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Question 1. We have a nonparametric regression model with autoregressive errors

yt = x′tβ + εt, εt = ρεt−1 + νt, ν1, . . . , νn ∼ IID(0, σ2ν).

To test H0:
◦
ρ = 0 versus H1 :

◦
ρ 6= 0 we use the test statistic

T (⇀Y ) =

∑n
t=2 ε̂tε̂t−1∑n
t=2 ε̂

2
t−1

,

where ε̂ = (In − X(X ′X)−1X ′)y = (In − X(X ′X)−1X ′)ε. Choose one of the following
options and show why it is the correct answer.

A. The test statistic Tn(⇀Y ) is not a pivot under the null.

B. The test statistic Tn(⇀Y ) is a pivot under the null.

Solution. The correct answer is option A. The test statistic is not a pivot under the
null because the statistical model is nonparametric. Any distribution with finite second
moment is included, which means that the test statistic can’t possibly have the same
distribution under all the distributions under the null. Take for instance a two-point dis-
tribution for εt = νt versus a continues distribution such as a Gaussian one.
6 points for correct explanation.
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Question 2. In finance people are very interested in calculating the risk of loss of invest-
ment portfolios, especially the maximum possible loss within a reasonable probability. To
do so they have defined the Value at Risk (VaR) of a loss random variable Y with known
cdf F as

VaRα(Y ) = c(F ) = inf{x ∈ R : F (x) ≥ 1− α}.

To estimate the characteristic ϑ = c(F ) we simulate y∗1, . . . , y
∗
B from F to construct the

Monte-Carlo distribution function F̂B. As an estimator we then use ϑ̂ = c(F̂B). Suppose
that n = 200 and α = 0.05. Choose one of the following options and show why it is the
correct answer.

A. ϑ̂ = y∗(10).

B. ϑ̂ = y∗(190).

C. ϑ̂ = y∗(195).

D. ϑ̂ = y∗(5).

Solution. The correct answer is option B. The function F̂B is a step function that
jumps with size 1

B at each of the simulated observations. We then have

c(F̂B) = inf{x ∈ R : F̂B(x) ≥ 1− α} = inf{x ∈ R : F̂B(x) ≥ 0.95} = y∗(190),

because that is the point where the function jumps to 0.95 = 190
200 .

2 points for writing the estimator, 2 points for realizing 0.95 = 190
200 , 2 points for correct

explanation.

3



Question 3. Suppose that we have categorical observable variables y1, . . . , yn ∈ {0, 1}
and explanatory variables x1, . . . , xk and that we would like to model the probability
P (Y1 = 1). The LOGIT model specifies this probability as

P (Y1 = 1 | xt) =
1

1 + e−(x
′
tβ)
,

where xt = (x1t , . . . , x
k
t ) are treated as fixed and β is a parameter vector. Suppose that we

split the vector β′ = (α, γ) and want to test H0: γ1 = . . . = γm = 0 versus H1: γ 6= 0. We
opt for a bootstrap procedure and let α̂ be an estimator for α under the null hypothesis.
Then the question remains how we can use α̂ to simulate y∗1, . . . , y

∗
n. Choose one of the

following options and show why it is the correct answer.

A. We simulate ut ∼ Uniform(0, 1) and set y∗t = 1{ 1

1+e−x
′
t(α̂
′,0) + ut ≥ 0}.

B. We simulate ut ∼ Uniform(0, 1) and set y∗t = 1{ 1

1+e−x
′
t(α̂
′,0) − ut ≥ 0}.

C. We simulate ut ∼ N(0, 1) and set y∗t = 1{ 1

1+e−x
′
t(α̂
′,0) − ut ≥ 0}.

D. We simulate ut ∼ N(0, 1) and set y∗t = 1{ 1

1+e−x
′
t(α̂
′,0) + ut ≥ 0}.

Solution. The correct answer is option B. In that case we have that

P (Y ∗t = 1) = P (1{ 1

1 + e−x
′
t(α̂
′,0)
− ut ≥ 0} = 1)

= P (
1

1 + e−x
′
t(α̂
′,0)
− ut ≥ 0)

= P (ut ≤
1

1 + e−x
′
t(α̂
′,0)

)

=
1

1 + e−x
′
t(α̂
′,0)

,

where we used the fact that ut is uniformly distributed for the last probability. Under the
null we have γ equal to zero. Therefore as α̂ → ◦

α as n → ∞ we see that this is a close
approximation to the data generating process under the null.
2 points for correctly rewriting the probability as in the first two lines, 3 points for prop-
erly calculating the last probability and using the uniform distribution, 1 point for correct
explanation why this indicates that it is a good approximation under the null.
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Question 4. Pick one of the following statements and explain why the other answers
are incorrect.

A. The power of a Monte-Carlo test can exceed that of the theoretical test if we let
B →∞.

B. In a Monte-Carlo hypothesis testing approach we need to make B as large as possible
to ensure that the size of the test is as close as possible to the chosen level α.

C. If a test statistic is a pivot it is best to use a bootstrap approximation to the unknown
population.

D. In a bootstrap approach to hypothesis testing we prefer to directly derive p-values,
but often use Monte-Carlo because the finite sample distributions cannot be derived.

Solution. The correct answer is option D.

• A. is incorrect because the power of the Monte Carlo test converges to that of the
theoretical test if we let B → ∞. Therefore it doesn’t exceed the power but equals
it in the limit.

• B. is incorrect, because the test is of level α for any B needs that satisfies α(B+1) ∈
N. Therefore we don’t have to make B as large as possible for the purpose of size,
we do this to increase the power as much as possible.

• C. is incorrect, because we don’t need a bootstrap approximation if a test statistic is
a pivot. We can directly sample from it’s distribution with the Monte-Carlo testing
method and so the bootstrap approximation only introduces unnecessary error in
the inference.

2 points for each correct explanation.

5



Question 5. We have a regression model

yt = x′tβ + εt, ε1, . . . , εn ∼ NID(0, σ2).

We wish to test H0:
◦
β1 = β0 at level α and opt for the t-statistic Tn(⇀Y ) =

β̂1,OLS−β0√
V̂ar(β̂1,OLS)

.

Let β̂OLS be the OLS estimator for
◦
β and let β̂ be an estimator for

◦
β under the null,

i.e. β̂1 = 0. Choose one of the following test procedures and explain why the other
answers perform worse.

A. Calculate the observed t-statistic Tn(⇀y) and reject H0 if |Tn(⇀y)| > c, where c is the
1− α/2 quantile of the tn−1 distribution.

B. Use a pairs bootstrap to obtain a p-value and reject H0 if this p-value is below α.

C. Calculate residuals ε̂t = yt − x′tβ̂ for 1 ≤ t ≤ n and simulate ε∗1, . . . , ε
∗
n from their

empirical distribution function. Then derive y∗t = x′tβ̂OLS + ε∗t and t∗ = Tn(⇀y∗).
Redo this B times and use Monte-Carlo testing to obtain a p-value and reject H0 if
this p-value is below α.

D. Calculate residuals ε̂t = yt − x′tβ̂ for 1 ≤ t ≤ n and simulate ε∗1, . . . , ε
∗
n from their

empirical distribution function. Then derive y∗t = x′tβ̂ + ε∗t and t∗ = Tn(⇀y∗). Redo
this B times and use Monte-Carlo testing to obtain a p-value and reject H0 if this
p-value is below α.

Solution. The correct answer is option A. Note that we have ε1, . . . , εn ∼ NID(0, σ2).
This distributional assumption makes the test statistic a pivot, which means that we can
just apply the regular t-test. All the other methods perform worse, because they are ap-
proximations of the distribution of the statistic instead of the true tn−1 distribution.
6 points for correct explanation.
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Question 6. We have an autoregressive model of order three:

yt = φ1yt−1 + φ2yt−2 + φ3yt−3 + εt, ε1, . . . , εn ∼ IID(0, σ2ε).

We wish to test for a unit root and thus rewrite the model as

∆yt = (φ1 + φ2 + φ3 − 1)yt−1 − (φ2 + φ3)∆yt−1 − φ3∆yt−2 + εt

= βyt−1 − (φ2 + φ3)∆yt−1 − φ3∆yt−2 + εt,

where ∆yt = yt − yt−1. To test H0:
◦
β = 0 versus H1:

◦
β 6= 0 we use the t-statistic

Tn(⇀Y ) =
β̂OLS√

V̂ar(β̂OLS)

.

Let (β̂OLS , φ̂2,OLS , φ̂3,OLS) be the OLS estimators of the rewritten model and let (φ̂2, φ̂3)
be the OLS estimators under the null hypothesis. Choose the best option out of the
following simulation procedures to obtain a simulated test statistic and explain why the
other answers perform worse.

A. Calculate residuals ε̂t = ∆yt + (φ̂2 + φ̂3)∆yt−1 + φ̂3∆yt−2 for 3 ≤ t ≤ n. Simulate
ε∗1, . . . , ε

∗
n from their empirical distribution function. Derive recursively y∗t = (1 −

φ̂2 − φ̂3)y∗t−1 + φ̂2y
∗
t−2 + φ̂3y

∗
t−3 + ε∗t and calculate t∗ = Tn(⇀y∗).

B. Calculate residuals ε̂t = ∆yt + (φ̂2 + φ̂3)∆yt−1 + φ̂3∆yt−2 for 4 ≤ t ≤ n. Simulate
ε∗1, . . . , ε

∗
n from their empirical distribution function. Derive recursively y∗t = (1 −

φ̂2 − φ̂3)y∗t−1 + φ̂2y
∗
t−2 + φ̂3y

∗
t−3 + ε∗t and calculate t∗ = Tn(⇀y∗).

C. Calculate residuals ε̂t = ∆yt + (φ̂2 + φ̂3)∆yt−1 + φ̂3∆yt−2 for 3 ≤ t ≤ n. Simulate
ε∗1, . . . , ε

∗
n from their empirical distribution function. Derive recursively y∗t = (1 −

φ̂2,OLS − φ̂3,OLS)y∗t−1 + φ̂2,OLSy
∗
t−2 + φ̂3,OLSy

∗
t−3 + ε∗t and calculate t∗ = Tn(⇀y∗).

D. Calculate residuals ε̂t = ∆yt + (φ̂2 + φ̂3)∆yt−1 + φ̂3∆yt−2 for 4 ≤ t ≤ n. Simulate
ε∗1, . . . , ε

∗
n from their empirical distribution function. Derive recursively y∗t = (1 −

φ̂2,OLS − φ̂3,OLS)y∗t−1 + φ̂2,OLSy
∗
t−2 + φ̂3,OLSy

∗
t−3 + ε∗t and calculate t∗ = Tn(⇀y∗).

Solution. The correct answer is option B. Option A doesn’t work, because when we
start at t = 3 we would have ε̂3 = ∆y3 + (φ̂2 + φ̂3)∆y2 + φ̂3∆y1. However ∆y1 contains
y0, which is not observed. Option D works less good, because it reconstructs the simu-
lated y’s with φ̂OLS , which doesn’t necessarily satisfy the null hypothesis. Therefore the
generated data is not a good approximation of the true data generating process under the
null. Option C has both of the problems detailed out above.
3 points for correct explanation t = 3, 3 points for correct explanation regarding simulat-
ing under the null.
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Question 7. Pick one of the following statements and explain why the other answers
are incorrect.

A. Any pivot is also an asymptotic pivot.

B. Parametric models are only useful if we don’t know the population
◦
F . If

◦
F is known

then it’s better to use a nonparametric model.

C. Nonparametric models always outperform parametric models, because it is more
likely that the true data generating process is contained in the model.

D. Any asymptotic pivot is also a pivot.

Solution. The correct answer is option A. Option B is incorrect because the purpose of
statistical models is to define a set of possible distributions of the random variables behind
observed data. If the population is known, then that model should only contain the pop-
ulation, which is not nonparametric. Option C is incorrect, because even though larger
models have higher likeliness to contain the true DGP they also have more distributions
that we then have to choose from. Ideally we want our model to be as small as possible,
given that it still contains the true population. Option D is incorrect as an asymptotic
pivot could only be a pivot in the limit, but not necessarily be one for finite n.
2 points for each correct explanation.
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Question 8. Let Y1 . . . , Yn be a vector of random variables from an exponential statistical
model {1 − e−θy | θ > 0}. It is well known that the maximum likelihood estimator for

ϑ = c(F ) = 1/E(Y ) = θ0 is given by Tn(⇀Y ) = 1/Y . The distribution of Tn(⇀Y ) depends on

ϑ and so we are unable to determine the bias of Tn(⇀Y ). As an approximation we decide
to use the parametric bootstrap function F̂n ∼ Exp(1/y) and derive

Bias(Tn(⇀Y ), F̂n) = E(Tn(⇀Y ) | F̂n)− c(F̂n).

Choose one of the following options and show why it is the correct answer. You are

allowed to use that E(1/Y |
◦
F ) = nθ0

n−1 .

A. Bias(Tn(⇀Y ), En) = ny
n−1 −

1
y .

B. Bias(Tn(⇀Y ), En) = ny
n−1 − y.

C. Bias(Tn(⇀Y ), En) = n/y
n−1 −

1
y .

D. Bias(Tn(⇀Y ), En) = n/y
n−1 − y.

Solution. The correct answer is option C. For a random variable X ∼ F̂n we have
E(X) = 1

1/y = y. Therefore c(F̂n) = 1/E(X) = 1/y. For the other part we use the hint to
quickly derive that

E(Tn(⇀Y ) | F̂n) = E(1/Y | F̂n) =
n/y

n− 1
,

where we used that F̂B is an exponential distribution with θ = 1
y .

3 points for each correct derivation.
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