Computational Finance: Exam Questions with Answers to Technical Questions

Bernd Heidergott & Ad Ridder

May 7, 2018

Exercise 1

- (a). [5 Credits] For what purposes are options traded at financial markets?
- (b). [5 Credits] Explain what an European call option is.
- (c). [5 Credits] Why does it take longer computing times to price an Asian option than an European option?
- (d). [5 Credits] What is the volatility smile?
- (e). [5 Credits] What are Greeks?

Exercise 2

Suppose that a portfolio consists of r assets of current values x_i ($i=1,\ldots,r$). The value of the i-th asset next week is $x_i e^{Y_i}$, where Y_1,\ldots,Y_r are random variables, independent, normally distributed with mean 0 and standard deviation σ_i ($i=1,\ldots,r$). Thus, the loss of the portfolio is

$$L = \sum_{i=1}^{r} x_i (1 - e^{Y_i}).$$

A negative loss is actually a profit. Suppose you are interested in the value of $v = \mathbb{E}[\mathbf{1}\{L > \ell\}]$ for some large threshold loss ℓ , and suppose that you apply Monte Carlo simulation for estimating v.

- (a). [5 Credits] Give the expression of the sample average estimator using sample size n.
- (b). [5 Credits] How do you estimate the standard error of the estimator?
- (c). [5 Credits] How do you construct 95% confidence intervals?
- (d). [5 Credits] Now write down the Monte Carlo algorithm for estimating b.
- (e). [5 Credits] How would you verify your computer program (i.e, check that your code is correct)?

Exercise 3

Let $X_1(\theta), \ldots, X_n(\theta)$ be i.i.d. samples from an exponential distribution with mean θ . Suppose we sampled n = 10 realizations at $\theta = 2$:

$$X_1(\theta) = 1.00, X_2(\theta) = 2.13, X_3(\theta) = 0.11, X_4(\theta) = 2.12, X_5(\theta) = 6, 41,$$

 $X_6(\theta) = 5.11, X_7(\theta) = 7.12, X_8(\theta) = 1.21, X_9(\theta) = 8.01, X_{10}(\theta) = 1.$

- (a.) [5 Credits] Compute $\frac{d}{d\theta}X(\theta)$.
- (b.) [5 Credits] Given the above sample, what is your estimator for the 0.9 quantile of the exponential distribution with mean θ ?
- (c.) [5 Credits] Provide the IPA estimator for the quantile sensitivity with respect to θ at $\theta = 2$?

Solution:

(a). $X(\theta) = -\theta \log(1 - U)$, thus

$$\frac{d}{d\theta}X(\theta) = -\log(1 - U) = \frac{-\theta\log(1 - U)}{\theta} = \frac{X}{\theta}.$$

(b). By $\lceil \alpha n \rceil = 9$, the estimator for the 0.9 quantile is

$$X_{\lceil \alpha n \rceil : 10} = X_7(\theta) = 7.12.$$

The IPA estimator follows from (use (a.)):

$$\frac{\partial}{\partial \theta} X_{\lceil \alpha n \rceil : 10} = \frac{X_7(\theta)}{\theta} = \frac{7.12}{2} = 3.06.$$

Exercise 4

[15 Credits] Let Bernoulli (θ) denote the Bernoulli distribution on $\{0,1\}$ assigning probability θ to 1 and $1-\theta$ to 0 with density

$$f_{\theta}(n) = \theta^{n} (1 - \theta)^{1-n}, \quad n \in \{0, 1\}$$

and note that $X(\theta) = \mathbf{1}\{U \leq \theta\}$ yields a Bernoulli (θ) sample, for U uniform on [0,1]. Compute the Score Function for the Bernoulli- θ -distribution.

Solution: Then the Score Function reads

$$S(\theta, n) = \frac{d}{d\theta} \log f_{\theta}(n) = \frac{d}{d\theta} \left(n \log \theta + (1 - n) \log(1 - \theta) \right)$$
$$= \frac{n}{\theta} - \frac{1 - n}{1 - \theta}.$$

Exercise 5

A stock price is currently ≤ 100 . It is known that at the end of one month it will be either ≤ 105 or ≤ 95 . The risk-free interest rate is zero.

- (a). [10 Credits] What is the price of a one-month European call option with a strik4 price of € 98.
- (b). [5 Credits] Verify your price by checking the no-arbitrage property.

(c). [5 Credits] How do you have to adapt your calculations if the risk-free interest rate is 2.4% per year? [Do not execute the calculations]

Solution:

- (a). Sell the option for a price $\in \mathbb{C}$ to the buyer. Then you construct a portfolio by borrowing $\in b$ at the bank, and buying Δ shares of the stock. You do this break-even, meaning $100\Delta = C + b$.
 - One month later: if the stock goes up, your portfolio value becomes $\in 105\Delta b$. And, you have to pay $\in 7$ to the option buyer.
 - But, if the stock goes down, the portfolio becomes $\leq 95\Delta b$, while the option buyer claims nothing.

Make sure that you can fullfill the claim of the buyer in both cases without making a loss or profit (no-arbitrage principle):

$$105\Delta - b = 7; \quad 95\Delta - b = 0.$$

This yields $\Delta=0.7$. And, $b=0.7\times95=66.5$ (euro). Thus, the option price is $C=100\Delta-b=3.50$ (euro). (b). Selling for $\in 3.50$ and borrowing $\in 66.50$, you have $\in 70$ for which you can buy 0.7 shares. Then, one month later, if the stock went up, your shares have value $\in 70\times1.05=\in 73.50$. Which is exactly the amount to pay the claim $\in 7$, and pay the loan $\in 66.50$ back to the bank. And if the stock went down, your shares have value $\in 70\times0.95=\in 66.50$. Which is exactly the amount to pay the loan back to the bank. (c). The value of the portfolio one month later needs to incorporate interest rate. Annually 2.4% gives monthly

$$105\Delta - 1.002b = 7; \quad 95\Delta - 1.002b = 0.$$

0.2%. Thus to fulfill the claim with certainty, the equations for determining Δ and b become