Faculty of Science	Final Exam Complex Analysis
Department of Mathematics	26-05-2023
Vrije Universiteit Amsterdam	08:30 - 11:15

The use of a calculator, a book, or lecture notes is <u>not</u> permitted. Do not just give answers, but give calculations and explain your steps.

- 1. We consider the function $f(z) = \frac{\exp(z-2)}{(z-2)^2(z+2)}$, and we further assume that all closed contours below are oriented counter-clockwise.
 - a) Compute $\int_{|z+2|=1} f(z) dz$ using the Cauchy integral formula. (3P)
 - b) Determine $\int_{|z-2|=1} f(z) dz$ using the generalized Cauchy integral formula. (3P)
 - c) Write f(z) as a product of two Laurent series about $z_0 = +2$. (5P)
 - d) Compute $\int_{|z|=4} f(z) dz$. (2P)
 - e) Determine for each singularity of the function $g(z) = f\left(\frac{1}{z} + 2\right)$ its type. (5P)
- 2. We consider the function $f(z) = \frac{1}{z^2 2z + 5}$, and we further assume that all closed contours below are oriented counter-clockwise.
 - a) Find the singularity of f in the upper half plane, and compute its residue. (4P)
 - b) Compute $\int_{|z-i|=2} f(z) dz$. (3P)
 - c) Compute the real integral $\int_{-\infty}^{+\infty} f(x) dx$. (3P)
- 3. Consider the domain $D = \{z \in \mathbb{C} : |z| < 1\}$. Are the following statements about a function f true or false? Justify your answer.
 - a) If f is analytic on $D\setminus\{0\}$, then f has an anti-derivative on $D\setminus\{0\}$. (2P)
 - b) If f has an anti-derivative on $D\setminus\{0\}$, then f is analytic on $D\setminus\{0\}$. (2P)
 - c) If f agrees with its Maclaurin series on $D\setminus\{0\}$, then f is analytic on D. (2P)
 - d) If the Maclaurin series of f converges on D, then f is analytic on D. (2P)

<u>Hint:</u> The Maclaurin series of f is the Taylor series of f about $z_0 = 0$.

Your grade =
$$\frac{\text{# your points}}{4} + 1$$

1