Vrije Universiteit Amsterdam	Complex Analysis, Final
Faculty of Sciences	25-05-2020
Department of Mathematics	15.30 - 17.30 pm

The use of a calculator, a book, or lecture notes is <u>not</u> permitted. Do not just give answers, but give calculations and explain your steps.

1. Check the analyticity of the following function:

$$f(x+iy) = e^x(x\cos y - y\sin y) + i \cdot e^x(x\sin y + y\cos y).$$

2. Determine all solutions $z=x+iy\in\mathbb{C}$:

a)
$$z - i = (2 - i)^i$$
,

b)
$$\sin z = i$$
.

3. Compute the Laurent series expansion of

a)
$$f(z) = \frac{\sin z}{(z-\pi)^2}$$
 around $z_0 = \pi$,

b)
$$f(z) = \frac{z-1}{z+i}$$
 around $z_0 = 1$.

4. Determine for every singularity its type

a)
$$f(z) = z^5 \cdot \sin(1/z^2)$$
,

b)
$$f(z) = \frac{\sin(z^2)}{z^5}$$
.

5. Let C denote the positively oriented boundary of the square whose sides lie along the lines $x = \pm 2$ and $y = \pm 2$. Evaluate each of these integrals:

a)
$$\int_C \cos\left(\frac{z-3}{z^2+z-12}\right) dz$$

b) $\int_C \frac{\exp(z^2)}{(z+1)^2} dz$ using the generalized Cauchy integral formula

c)
$$\int_C \frac{\exp(z^2)}{z^2 + 1} \, dz$$

Scoring:

Final grade =
$$\frac{\text{\# points}}{4} + 1$$