Week 1

If the number of odd degrees is 0 or 2, the connected path has an Euler path. If 0, the path is a cycle: starts and finish at the same vertex.

Shortest path Dijkstra:

Look at each vertex, which is path shorter, and compare, choose the shortest path.

A spanning tree:

A spanning tree is a sub graph, which contains all the vertices and is a tree. A tree is a connected graph without any cycles.

A graph may have more spanning trees.

Minimal spanning tree:

The spanning tree with the min cost for that graph

→ Kruskal's and Prim's algorithm for minimal spanning tree

Kruskal's algorithm:

- 1) Sort all the edges in decreasing order
- 2) Connect the edges in this order
- 3) If there's a cycle, don't add the edge

Prim's algorithm:

- 1) Start random
- 2) Choose the shortest path from your starting point
- 3) Look which path is the shortest from the vertices you already reached

Augmenting path has:

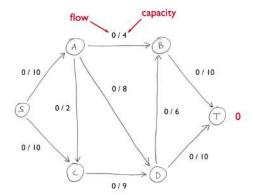
- 1) Non-full forward edges
- 2) Non-empty backward edges

Max flow: Ford Fulkerson algorithm:

For computing the <u>max flow</u> in flow network

From source to sink

- 1) Find an augmenting path
- 2) Compute the bottleneck capacity
- 3) Augment each edge and the total flow



MaxFlow=MinCut

The running time only depends on the size of the network and not on the capacities.

Max flow: Edmonds-Karp-Dinitz (EKD) algorithm:

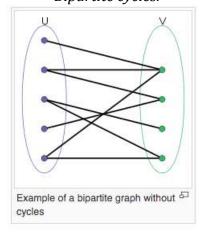
This algorithm applies the FF algorithm, but in each iteration it choose the s, t path in the residual graph with the minimum number of arcs.

Min flow: The cycle cancelling algorithm:

- 1) Find a feasible flow of value v. Make the residual graph
- *2)* While there is negative cost cycle *C* in the residual graph:
- → Add the largest possible flow over C
- → *Update the residual graph*

What kind of questions to expect?

- Give the corresponding LP-formulation for the network
- → *Make all the paths*
- → Number them X1, X2, ..., Xn -> <u>max X1, X2..</u>
- → *Number all the edges*
- → Look at which path crosses the edge, and what the capacity is
- → You get <u>St. X1 <= capacity passing edge</u>
- Give the maximum flow and it's corresponding LP-solution
- → Maximum flow: look at all the edges capacity, add al the capacities of the paths
- → Max flow: what passes all edges
- Give the dual of this LP
- \rightarrow Capacity times the path becomes -> min 2Y2 + 3Y2
- → St. path -> Y1 + Y3 >= 1
- Find a solution to the dual with value equal to the primal solution found
- Give an interpretation of this dual solution in terms of the network
- Find a minimum cost flow by using the cycle cancelling algorithm.
- Bipartite cycles:



An arc a is called upward critical if increasing the capacity of a increases the value of the maximum flow

An arc a is called downwards critical if decreasing the capacity of a decreases the value of the maximum flow

Week 2

P vs. NP:

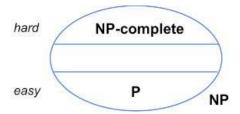
A problem is in NP hard if it can be verified in polynomial time. A problem is in P if a solution can either be found or proven in polynomial time.

P is a subset of NP. Not really correct!

A search problem is called NP-complete if all other search problems reduce to it. A problem is called NP-hard if all other search problems reduce to it. (Notice the difference, search problem and problem)

NP-complete problems can be seen as the hardest problems among all the search problems.

The halting problem is an example of an NP-hard problem that is not in NP.



Reductions:

The implication of $A \to B$ is twofold:

- 1. Any efficient algorithm for B can be used to solve A efficiently.
- 2. Solving problem B is at least as difficult as solving problem A (up to a polynomial factor in running time).

Reductions are transitive (they compose):

$$(A \to B \text{ and } B \to C) \Rightarrow A \to C.$$

The class of search problem is also known as NP.

Every optimization problem can be modelled as a search problem.

Any algorithm for search problems can be used for optimization problems, with just a polynomial factor loss in running time.

If we have an algorithm for the search problem, we also have an algorithm for the decision version.

If $A \rightarrow B$ then any algorithm for B can be used to solve A.

If A -> B and A is NP-complete, then B is NP-complete as well.

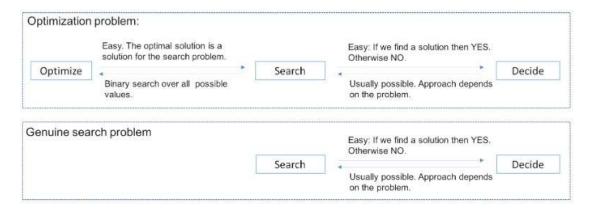


Figure 2: Three forms of optimization. Some search problems do not have an optimization variant.

P (easy)	NP-complete (hard)	
Euler tour	Rudrata tour	
Shortest path	Longest path	
Chinese Postman	Traveling Salesman	
Linear Programming (LP)	Integer Linear Programming (ILP)	
2SAT	Satisfiability (SAT) and 3SAT	
Minimum Spanning Tree	Vehicle Routing	
Matching	Load Balancing	
Maximum Flow	Knapsack	
Minimum Cost Flow	Vertex Cover	
• • •		

Figure 4: Although both lists are essentially infinitely long, most problems in practice are hard. Some problems come in easy-hard pairs like Euler-Hudrata and LP-ILP.

Important:

f=O(g) -> g goes up, f goes down $f=\Omega(g)$ -> g goes down, f goes up f=O(g) -> g and f goes same way

Week 3

See lecture nodes:

- Approximation algorithms
- Vertex cover
 - Algorithm A: maximal matching
 - *Algorithm B: LP-rounding*
 - Generalization to Set Cover
- K-Clustering: Greedy algorithm
- The traveling salesman (TSP)
 - Complexity of TSP
 - Double tree algorithm
 - Nearest addition algorithm
 - Christofides' algorithm

Approximation Algorithms

Definition 1. An α -approximation algorithm for an optimization problem is a polynomial-time algorithm that, for each instance of the problem, produces a solution with a value that is within a factor α of the optimal value.

For an instance I, we deonte by Opt(I) the optimal value and by Alg(I) the value returned by the algorithm.

To show that an algorithm is an α -approximation algorithm we need to show three things:

- (1) The algorithm runs in polynomial time.
- (2) The algorithm always produces a feasible solution.
- (3) For any isntance I, the value is within a factor α of the optimal value:

 $Alg(I) \le \alpha Opt(I)$ (for a minimization problem, $\alpha \ge 1$)

 $Alg(I) \ge \alpha Opt(I)$ (for a maximization problem, $\alpha \le 1$)

Approximation algorithms deal with optimization problems. The algorithm should always return a solution with a value that is close to the optimal value.

1. Vertex cover

In this problem, we need to find for a given graph G = (V, E) a subset of vertices such that each edge has an endpoint in the set. The goal is to minimize the number of vertices in the subset.

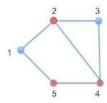


Figure 1: The red vertices form a minimum vertex cover: $S = \{2, 4, 5\}$.

VERTEX COVER:

Instance: Graph G = (V, E).

Output: $S \subseteq V$ such that each edge has at least one endpoint in S.

Goal: Minimize |S|.

It is a NP-hard problem. Thus there is no polynomial time algorithm that solves the problem, unless P=NP.

Algorithm A: maximal matching

Find a maximal matching M and add all endpoints of the edges in M to S. (Algorithm A is a 2-approximation algorithm)

Algorithm B: LP-rounding

LP's can be solved in polynomial time

The vertex cover problem can easily be formulated as an integer linear programming problem (ILP). Let n = |V| be the number of vertices.

$$\begin{array}{ll} \text{(ILP)} \ \min & Z = \sum\limits_{j=1}^n x_j \\ \\ s.t. & x_i + x_j \geqslant 1 \quad \text{ for all } (i,j) \in E \\ \\ & x_j \in \{0,1\} \quad \text{ for all } j \in V. \end{array}$$

The vertex cover problem is \mathcal{NP} -hard which implies that the ILP above can not be solved in polynomial time, unless $\mathcal{P} = \mathcal{NP}$. However, the following LP-relaxation (in which $x_i \in \{0,1\}$ is replaced by $x_i \geq 0$) can be solved efficiently.

$$\begin{array}{ll} \text{(LP) min} & Z = \sum\limits_{j=1}^n x_j \\ \\ s.t. & x_i + x_j \geqslant 1 \quad \text{ for all } (i,j) \in E \\ \\ & x_j \geqslant 0 \quad \quad \text{ for all } j \in V. \end{array}$$

The idea of the algorithm is to solve (LP) and then round that solution in a feasible solution for (IP). This technique is called *LP-rounding*.

(Instead of X_j in $\{0,1\} -> X_j >= 0$)

Weighted Vertex Cover problem

In this case each vertex has a given weight Wj>0 and the goal is to minimize the total weight of the cover.

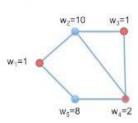


Figure 4: Graph G with weights on the vertices is an instance of the weighted Vertex Cover problem. The optimal solution has total weight 1+1+2=4.

$$\begin{array}{ll} \text{(LP)} \ \min & Z = \sum\limits_{j=1}^n \frac{\textbf{\textit{w}}_j}{\textbf{\textit{w}}_j} x_j \\ \\ s.t. & x_i + x_j \geqslant 1 \qquad \text{for all } (i,j) \in E \\ \\ & x_j \geqslant 0 \qquad \qquad \text{for all } j \in V. \end{array}$$

[3] The value of the solution found is

$$\sum_{j \in S} w_j = \sum_{j=1}^n w_j \hat{x}_j \leqslant 2 \sum_{j=1}^n w_j x_j^* = 2 Z_{LP}^* \leqslant 2 Z_{ILP}^* = 2 \text{Opt.}$$

Generalization to Set Cover

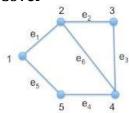


Figure 5: Graph G is an instance of the Vertex Cover problem. Equivalently, we can write it as a Set Cover problem. For each vertex j there is a set S_j containing the adjacent edges: $S_1 = \{e_1, e_5\}$, $S_2 = \{e_1, e_2, e_6\}$, $S_3 = \{e_2, e_3\}$, $S_4 = \{e_3, e_4, e_6\}$, and $S_5 = \{e_4, e_5\}$.

and assume that each item appears in at most f sets, for some constant f. The LP-rounding algorithm for vertex cover problem applies here in the same way.

$$\begin{array}{ll} \text{(ILP)} \ \ \min \quad Z = \sum\limits_{j=1}^n w_j x_j \\ s.t. \quad \sum\limits_{j:e_i \in S_j} x_j \geqslant 1 \quad \ \ \text{for all } i=1,\dots,m \\ x_j \in \{0,1\} \quad \ \ \text{for all } j=1,\dots,n. \end{array}$$

The LP-relaxation is obtained by replacing $x_i \in \{0,1\}$ by $x_i \ge 0$.

(LP) min
$$Z=\sum\limits_{j=1}^n w_jx_j$$
 s.t. $\sum\limits_{j:e_i\in S_j} x_j\geqslant 1$ for all $i=1,\ldots,m$ for all $j=1,\ldots,n$.

Algorithm B (set cover):

Step 1: Solve the LP. \rightarrow Optimal values $x_1^*, x_2^*, \dots, x_n^*, Z_{LP}^*$

Step 2: Let U be all j for which $x_i^* \ge 1/f$.

What kind of questions to expect?

• Show with an example that algorithm A is a 2-approximation algorithm for the weighted vertex cover problem

If true: ALG/OPT <= 2 If not true: ALG/OPT >2

- Give an optimal vertex cover for the graph
- Give the ILP for this vertex cover

Min X1 + X2 +

St. X1 + X2 >= 1

Xi in $\{0,1\}$ for i=1, 2,

 Give the LP relaxation for this vertex cover Min X1 + X2 +

0. 1/4 1/0 4

St. X1 + X2 >= 1

Xi >= 0 for i=1, 2,

• Give a solution to the LP-relaxation which is strictly smaller/bigger than the optimal value

2. The k-cluster problem.

K-CLUSTER:

Instance: Points $X = \{x_1, \dots, x_n\}$ with underlying distance metric $d(x_n)$

and an integer k.

Output: A partition of the points into k clusters C_1, \ldots, C_k .

Goal: Minimize the maximum diameter of a clusters:

 $\text{Minimize:} \quad \max_{j} \left\{ \max_{x_a, x_b \in C_j} d(x_a, x_b). \right\}$

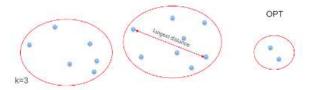


Figure 6: Example. The cost of the solution is the maximum distance betwee two points in a cluster.

Algorithm Greedy:

- Pick the first center μ₁ arbitrarily.
- For i=2 to k:

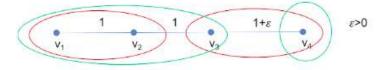
Let μ_i be the point in X that is farthest from $\{\mu_1, \ldots, \mu_{i-1}\}$.

- Create k clusters: C_i is the set of all $x \in X$ whose closest center is μ_i .

Theorem 4. The Greedy algorithm is a 2-approximation algorithm.

Exercise 3 Show by an example that the Greedy algorithm for k-clustering is not better than a 2-approximation algorithm. That means, given an example for which the value of the algorithm's solution is twice the optimal value.

Solution: Take for example 4 points on a line with distances as shown and with k=2. The optimal solution has maximum diameter equal to 1. If the greedy algorithm starts with point v_1 , then v_4 will be the other center. The clusters are $\{v_1, v_2.v_3\}$ and $\{v_4\}$ and the maximum diameter is 2. The ratio $ALG/OPT \rightarrow 2$ for $\epsilon \rightarrow 0$.



The traveling salesman (TSP)

A complete graph with a cost Cij for every pair i, j. A cycle that goes trough every vertex exactly once. The goal is to minimize the length of the cycle.

There are three algorithms for TSP:

Algorithm 1 (Double tree).

- Find a minimum spanning tree T.
- Double all the edge of the tree. (See Figure 10).
- Find an Euler tour in the double tree.
- Apply shortcutting in order to turn the Euler tour into a Hamiltonian cycle.

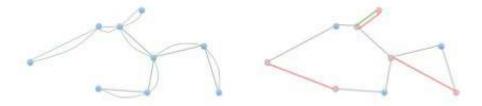


Figure 10: The double tree (left) (for Algorithm 1) and the MST plus a matching of the odd-degree nodes (right) (for Algorithm 3).

Algorithm 2 (Nearest addition).

- Pick an arbitrary point, say i1, as the first point.
- Let i₂ be the point nearest to i₁. Make a directed tour from i₁ to i₂ and back to i₁. Let S = {i₁, i₂}.
- Repeat the following until a feasible tour is found:
 - Find a pair i ∈ S, j ∉ S with minimum cost c_{ij}. (In other words, find the point j that is nearest to the already chosen set S.) Insert j in the tour after i. Add j to S.

Figure 9: Iteration of the nearest addition algorithm.

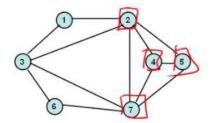
Algorithm 3 (Christofides' algorithm).

- Find a minimum spanning tree T. Let O be the vertices of odd degree in T.
- Find a minimum cost perfect matching of the vertices in O. Denote the edges in this matching by M.
- Find an Euler tour in the graph T+M.
- Apply shortcutting in order to turn the Euler tour into a Hamiltonian cycle.

Note that a perfect matching on O exists since |O| is even. (Any graph contains an even number of odd-degree points.) Also note that the cheapest perfect matching can be found in polynomial time. (Not for this course.)

Clique

- Clique
 - Graph G = (V, E), a subset S of the vertices is a clique if there is an edge between every pair of vertices in S

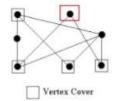


Vertex Cover

Definition:

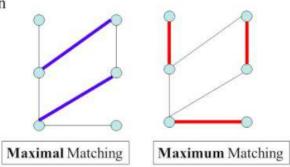
Given an undirected graph G = (V, E), a subset $V' \subseteq V$ is called a vertex cover of G iff for every edge $e \in E$, e has at least one endpoint incident at V'

An Example



Maximal & Maximum Matchings

- Maximal Matching: A maximal matching in a graph is a matching that cannot enlarged by adding an edge
- Maximum Matching: A maximum matching is a matching of maximum size among all matchings in the graph



Graph isomorphism:

If there is isomorphism then there's bijection between the vertex set of two graphs.

Rudrata's path:

Visit all vertices of a graph exactly once.

Rudrata's cycle:

Visit all vertices of a graph exactly once and end at the starting point

Hamilton cycle:

Visit all vertices of a graph exactly once and end at the starting point

Rudrata's cycle = Hamilton cycle

Euler path:

Visit all edges of a graph exactly once.

Big 0 notation

Week 4

Scheduling

What is scheduling?

Scheduling concerns optimal allocation or assignment of resources, over time, to a set of tasks/activities/jobs.

Resources (M): machines, people, space Tasks (J): production, jobs, classes, flights

May be presented by Gantt Charts:

J_2	J_3	J_1	M_2	M_3	
J_1	J_3 J_4	J_2	M_1		
J_3	J_1	J_3	M_3	M_2	M
		J_{4}	***************************************		\overline{N}

- m machines i=1,...,m
- n jobs j=1,...,n

Job parameters:

- p_i: processing time of job j
- p_{ij}: processing time of job j on machine i (when processing time of job j depends on machine i)
- r_i: release date of job j (earliest starting time)
- d_i: due date (deadline) (=committed completion time)
- w_i: weight of job j (importance)

Classification of Scheduling Problems

(Most) scheduling problems can be described by a three field notation $\alpha |\beta| \gamma$, where

- α describes the <u>machine</u> environment
- B describes the job characteristics, and
- y describes the objective criterion to be minimized (or max.)

Remark: A field may contain more than one entry but may also be empty

Example:

 $\mathbf{1} \mid \mathbf{r}_{j} \mid \Sigma_{j} \mathbf{C}_{j}$

 $\alpha |\beta| \gamma$,

Single machine.

Jobs have release times.

Objective is minimizing the sum of the completion times.

Machine environment (α)

Single machine (α = 1)

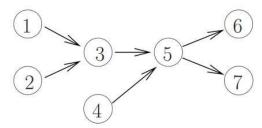
Why single machines?

The

- Identical parallel machines ($\alpha = P$ or Pm)
 - m identical machines running in parrallel;
 - If $\alpha = P$, then the number of machines, m, is part of the input
 - If α = Pm, the value m is considered a constant
 - each job consist of a single operation and this may be processed by any of the machines for p_i time units
- Unrelated parallel machines (α = R or Rm)
 - m different machines in parallel
 p_{ij} is the process time of job j if scheduled completely on machine i
 simply arrive in practice
 - Multi machine problems can often be decomposed into single machine problems
 - The form the basic for the design of the algorithms for more complicated scheduling problems

Job characteristics (β)

- release dates (r_i in β field)
 - $-\,$ if $r_i\,$ in β field, jobs may not start processing before their release date
 - if r_i is not in β field, jobs may start at any time
- deadlines (d_i in β field)
 - if d_i is in β field, each job j should finish before time d_i
- preemption (pmtn in β field)
 - processing of a job on a machine may be interrupted and resumed at a later time even on a different machine
- unit processing times (p_i = 1 or p_{ii} = 1 in β field)
 - each job (operation) has unit processing times
- precedence constraints (prec in β field)
 - A job cannot start before some other job(s) are finished
 - May be represented by an acyclic graph (vertices = jobs, arcs = precedence relations)



For example: job 5 can not start before 1,2, 3 and 4 are completed. jobs 1,2, and 4 can start immediately.

Objective function (γ)

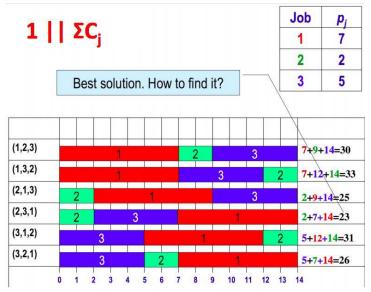
Notation:

- C_i: completion time of job j
- $L_i = C_i d_i$: lateness of job j

Objectives:

- $\begin{array}{lll} & Makespan & \left(\gamma = C_{max}\right) & C_{max} = max \left\{C_{1},...,C_{n}\right\} \\ & Maximum \ lateness & \left(\gamma = L_{max}\right) & L_{max} = max \left\{L_{1},...,L_{n}\right\} \\ & Total \ completion \ time & \left(\gamma = \sum_{j} C_{j}\right) \\ & Total \ weighted \ completion \ time & \left(\gamma = \sum_{j} w_{j}C_{j}\right) \end{array}$
- Many more models in literarture!

Examples:



1 | | Sum Cj is solved by ordering jobs in SPT order. (Shortest Production Time) This takes O(n log n) time.

2) **1 || Σw_jC_j**

Easier case: $1|p_i=1| \Sigma w_i C_i$

Job	p_{j}	\mathbf{w}_{j}
1	1	7
2	1	2
3	1	5

OPT 1 3 2
$$\Sigma w_i C_i = 7 + 5.2 + 2.3 = 23$$

In an optimal schedule the jobs have to be ordered in **decreasing** (non-increasing) order of their weights.

We have seen:

- If $w_1=w_2=...=w_n$ then smallest jobs go first (SPT).
- If $p_1 = p_2 = ... = p_n$ then largest weight goes first.

For arbitrary w_i and p_i use Smith's ratio rule:

Scheduling in non-increasing order of w_j/p_j (weighted shortest processing time, WSPT) is optimal.

1 | Sum WjCj is solved by using WSPT order. Weighted Shortest Processing Time) This takes O(n log n) time.

3) $1 | r_j$, pmtn $| \Sigma C_j$

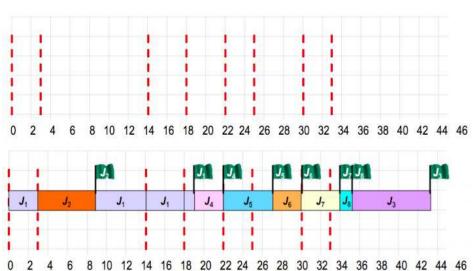
Shortest Remaning Processing Time rule (SRPT)

At any moment in time, process the job with smallest remaining processing time among the available jobs.

	r	P
J_{i}	0	13
J_2	3	6
J_3	14	8
J_4	18	3
Js	22	5
J ₆	25	3
J_{τ}	30	4
J_8	33	1

Shortest Remaining Processing Time first (SRPT) rule:

each time that a job is completed, or at the next release date, the job to be processed next has the smallest remaining processing time among the available jobs.



4) 1 | L_{max}

Minimizing the maximum lateness.

Lateness of job j: $L_j=C_j-d_j$ (=time after the due date) $L_{max}=max\{L_1,...,L_n\}$

Earliest Due Date (EDD)

Schedule jobs in non-decreasing order of due date d_i.

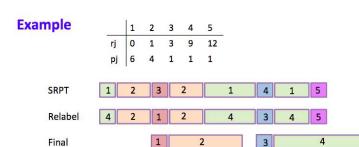
5) $1 |r_j| \Sigma C_j$

Algorithm A

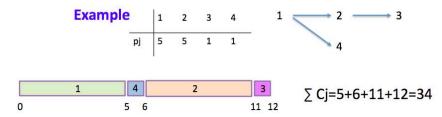
Step 1: Apply SRPT. Let C_1^* , ..., C_n^* be the completion times.

Assume (relabel) $C_1^* \le ... \le C_n^*$

Step 2: Schedule jobs in order 1,2,.., n



6) 1 | prec | Σ C_i



Theorem The problem 1 | prec $|\Sigma|$ C_i is NP-hard (Proof omitted)

All with 1 machine:

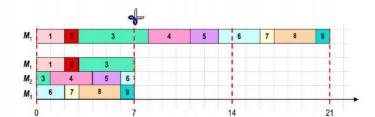
Results part 1:

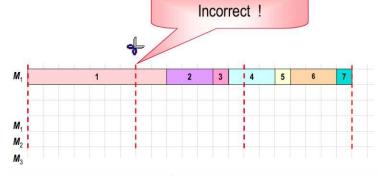
- 1) 1 | | EC_i SPT is optimal
- 2) 1 | Σw_iC_i Smith's ratio rule is optimal: Order by w_i/p_i
- 3) $1 \mid r_j$, pmtn $\mid \Sigma C_j$ SRPT is optimal
- 4) 1 | L_{max} Earliest Due Date (EDD) is optimal
- 5) $1 \mid r_j \mid \Sigma C_j$ NP-hard. SRPT order gives 2-approximation.
- 6) $1|prec|\Sigma C_j$ NP-hard. LP order gives 2-approximation.

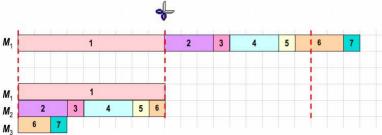
P | pmtn | C_{max} 1)

McNaughton's wrap-around rule :

- 1. Calculate the optimal makespan value
- $C_{\text{max}}^{OPT} = \max \left\{ p, \sum_{j=1}^{n} p_j / m \right\}$
- 2. Construct a single-machine nonpreemptive schedule (assign n jobs to a single machine in an arbitrary order starting with the longest job)
- 3. Cut this single-machine schedule into $\it m$ parts of length $C_{\rm max}^{\it OPT}$







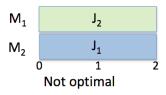
3) $R \mid \mid \sum C_i$

Unrelated machines

 $\boldsymbol{p}_{ij}\!:\!$ Processing time of job j depends on machine i .

Example $p_{11} = p_{22} = 1$ and $p_{12} = p_{21} = 2$

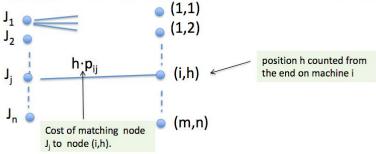
Optimal



We can reduce $R \mid \mid \sum C_j$ to a minimum cost perfect matching on a complete bipartite graph.

Next, we can reduce this minimum cost perfect matching to a mincost flow problem. (Friday's tutorial)

We know from week 1 that mincost flow can be solved efficiently.



4) Rm | | C_{max}

Fact P2 || C_{max} is NP-hard (See exercises this week). \rightarrow Rm || C_{max} is NP-hard too.

The LP-relaxation

(LP) min
$$Z$$

$$s.t.$$
 $\sum_{i=1}^{m} x_{ij} = 1$ for all jobs j $\sum_{j=1}^{n} x_{ij} p_{ij} \leq Z$ for all machines i $x_{ij} \geq 0$ for all i, j

Algorithm:

- Step 1. Solve LP-relaxation Let S_1 be the integer jobs $(x_{ij}=1)$ Let S_2 be the fractional jobs (the other jobs).
- Step 2. For S_1 : Assign job j to i if $x_{ij}=1$. Next, For S_2 : Try all possible assignments and take the one that gives the smallest makespan (C_{max}) .

Algorithm:

Step 1. Solve LP-relaxation

Let S_1 be the integer jobs $(x_{ii}=1)$

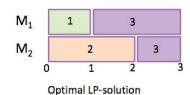
Let S₂ be the fractional jobs (the other jobs).

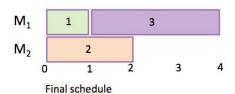
Step 2. For S_1 : Assign job j to i if $x_{ij}=1$. Next,

For S₂: Try all possible assignments and take the one

that gives the smallest makespan (C_{max}).

Example:





Lemma 1: Algorithm runs in polynomial time (for m=constant)

Step 1 LP can be solved in polynomial time.

• Step 2 Claim: There are at most m fractional jobs

Proof: Next slide

Given the claim:

Only O(m^m) possible assignments to check in step 2.

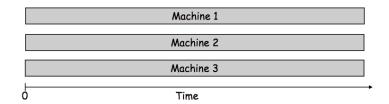
This is constant for m is constant.

Results for part 2

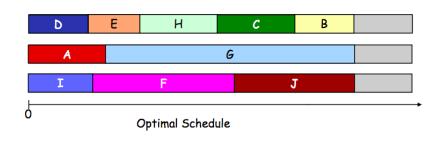
- 1) P | pmtn | C_{max}
- McNaughton's wrap around rule is optimal.
- 2) P | | C_{max}
- NP-hard.
- List scheduling is 2-approximation.
- LPT is 4/3-approximation.
- 3) R || ΣC_j
- Reducible to min-cost perfect matching.
- 4) Rm || C_{max}
- NP-hard.
- LP + enumerating schedules gives 2-approx.

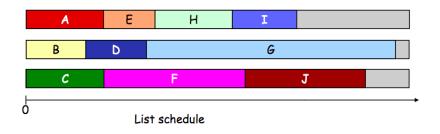
Minimising C_{max}

List Scheduling



List Scheduling



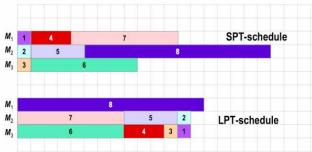


Longest Processing Time (LPT) rule

Order jobs by processing time : $p_1 \ge p_2 \ge ... \ge p_n$. Apply list scheduling in this order.

Theorem: LPT is 4/3 - approximation for P|| C_{max}

Proof: Friday's tutorial



Week 5

Dynamic Programming

The idea of DP is always the same: A problems is solved by solving (smaller) subproblems. Solutions to subproblems are stored in memory (the DP table). To solve a subproblem we make use of the stored information on other subproblems. In building and analyzing a DP ask yourself the following questions:

- (1) What is the subproblem to solve? In other words: What will be in the table?
- (2) What is the optimal value, expressed in terms of the subproblems? In other words: How do you find the optimal value once the table is filled?
- (3) What are the initial values? In other words: What values can you fill in right away?
- (4) What is the recurrence used? In other words: Given the initial values, how to compute the rest?
- (5) What is the used space? This is often the size of the DP table. For example, O(n) or O(n²). But sometimes we can do with less space, see for example Exercise 1.
- (6) What is the running time? This is usually (but not always) the size of the table times the time in takes to compute one value of the table.