
Week 1

If the number of odd degrees is 0 or 2, the connected path has an Euler path.

If 0, the path is a cycle: starts and finish at the same vertex.

Shortest path Dijkstra:

Look at each vertex, which is path shorter, and compare, choose the shortest path.

A spanning tree:

A spanning tree is a sub graph, which contains all the vertices and is a tree. A tree is

a connected graph without any cycles.

A graph may have more spanning trees.

Minimal spanning tree:

The spanning tree with the min cost for that graph

 Kruskal’s and Prim’s algorithm for minimal spanning tree

Kruskal’s algorithm:

1) Sort all the edges in decreasing order

2) Connect the edges in this order

3) If there’s a cycle, don’t add the edge

Prim’s algorithm:

1) Start random

2) Choose the shortest path from your starting point

3) Look which path is the shortest from the vertices you already reached

Augmenting path has:

1) Non-full forward edges

2) Non-empty backward edges

Max flow: Ford Fulkerson algorithm:

For computing the max flow in flow network

From source to sink

1) Find an augmenting path

2) Compute the bottleneck capacity

3) Augment each edge and the total flow

MaxFlow=MinCut

The running time only depends on the size of the network and not on the capacities.

Max flow: Edmonds-Karp-Dinitz (EKD) algorithm:

lOMoARcPSD|4424963

This algorithm applies the FF algorithm, but in each iteration it choose the s, t path

in the residual graph with the minimum number of arcs.

Min flow: The cycle cancelling algorithm:

1) Find a feasible flow of value v. Make the residual graph

2) While there is negative cost cycle C in the residual graph:

 Add the largest possible flow over C

 Update the residual graph

What kind of questions to expect?

 Give the corresponding LP-formulation for the network

 Make all the paths

 Number them X1, X2, …, Xn -> max X1, X2..

 Number all the edges

 Look at which path crosses the edge, and what the capacity is

 You get St. X1 <= capacity passing edge

 Give the maximum flow and it’s corresponding LP-solution

 Maximum flow: look at all the edges capacity, add al the capacities of the

paths

 Max flow: what passes all edges

 Give the dual of this LP

 Capacity times the path becomes -> min 2Y2 + 3Y2

 St. path -> Y1 + Y3 >= 1

 Find a solution to the dual with value equal to the primal solution found

 Give an interpretation of this dual solution in terms of the network

 Find a minimum cost flow by using the cycle cancelling algorithm.

 Bipartite cycles:

An arc a is called upward critical if increasing the capacity of a increases the value

of the maximum flow

An arc a is called downwards critical if decreasing the capacity of a decreases the

value of the maximum flow

Week 2

P vs. NP:

A problem is in NP hard if it can be verified in polynomial time.

A problem is in P if a solution can either be found or proven in polynomial time.

P is a subset of NP. Not really correct!

lOMoARcPSD|4424963

A search problem is called NP-complete if all other search problems reduce to it.

A problem is called NP-hard if all other search problems reduce to it.

(Notice the difference, search problem and problem)

NP-complete problems can be seen as the hardest problems among all the search

problems.

The halting problem is an example of an NP-hard problem that is not in NP.

Reductions:

The class of search problem is also known as NP.

Every optimization problem can be modelled as a search problem.

Any algorithm for search problems can be used for optimization problems, with just

a polynomial factor loss in running time.

If we have an algorithm for the search problem, we also have an algorithm for the

decision version.

If A -> B then any algorithm for B can be used to solve A.

If A -> B and A is NP-complete, then B is NP-complete as well.

lOMoARcPSD|4424963

Important:

f=O(g) -> g goes up, f goes down

f= Ω(g) -> g goes down, f goes up

f=Θ(g) -> g and f goes same way

Week 3

See lecture nodes:

 Approximation algorithms

 Vertex cover

 Algorithm A: maximal matching

 Algorithm B: LP-rounding

 Generalization to Set Cover

 K-Clustering: Greedy algorithm

 The traveling salesman (TSP)

 Complexity of TSP

 Double tree algorithm

 Nearest addition algorithm

 Christofides’ algorithm

lOMoARcPSD|4424963

Approximation algorithms deal with optimization problems. The algorithm should

always return a solution with a value that is close to the optimal value.

It is a NP-hard problem. Thus there is no polynomial time algorithm that solves the

problem, unless P=NP.

Algorithm A: maximal matching

Find a maximal matching M and add all endpoints of the edges in M to S.

(Algorithm A is a 2-approximation algorithm)

Algorithm B: LP-rounding

LP’s can be solved in polynomial time

lOMoARcPSD|4424963

(Instead of Xj in {0,1} -> Xj >= 0)

Weighted Vertex Cover problem

In this case each vertex has a given weight Wj>0 and the goal is to minimize the

total weight of the cover.

lOMoARcPSD|4424963

Generalization to Set Cover

What kind of questions to expect?

 Show with an example that algorithm A is a 2-approximation algorithm for

the weighted vertex cover problem

If true: ALG/OPT <= 2

If not true: ALG/OPT >2

 Give an optimal vertex cover for the graph

 Give the ILP for this vertex cover

Min X1 + X2 +

St. X1 + X2 >= 1

Xi in {0,1} for i=1, 2,

 Give the LP relaxation for this vertex cover

Min X1 + X2 +

St. X1 + X2 >= 1

Xi >= 0 for i=1, 2,

 Give a solution to the LP-relaxation which is strictly smaller/bigger than the

optimal value

lOMoARcPSD|4424963

The traveling salesman (TSP)

A complete graph with a cost Cij for every pair i, j. A cycle that goes trough every

vertex exactly once. The goal is to minimize the length of the cycle.

There are three algorithms for TSP:

lOMoARcPSD|4424963

lOMoARcPSD|4424963

Graph isomorphism:

If there is isomorphism then there’s bijection between the vertex set of two graphs.

Rudrata’s path:

Visit all vertices of a graph exactly once.

lOMoARcPSD|4424963

Rudrata’s cycle:

Visit all vertices of a graph exactly once and end at the starting point

Hamilton cycle:

Visit all vertices of a graph exactly once and end at the starting point

Rudrata’s cycle = Hamilton cycle

Euler path:

Visit all edges of a graph exactly once.

Big 0 notation

Week 4

Scheduling

What is scheduling?

Scheduling concerns optimal allocation or assignment of resources, over time, to a

set of tasks/ activities/ jobs.

Resources (M): machines, people, space

Tasks (J): production, jobs, classes, flights

May be presented by Gantt Charts:

lOMoARcPSD|4424963

Why single

machines?

 The

simply arrive in practice

 Multi machine problems can often be decomposed into single machine

problems

 The form the basic for the design of the algorithms for more complicated

scheduling problems

lOMoARcPSD|4424963

Examples:

lOMoARcPSD|4424963

1| | Sum Cj is solved by ordering jobs in SPT order.

(Shortest Production Time)

This takes O(n log n) time.

1 | Sum WjCj is solved by using WSPT order.

Weighted Shortest Processing Time)

This takes O(n log n) time.

lOMoARcPSD|4424963

lOMoARcPSD|4424963

All with 1 machine:

lOMoARcPSD|4424963

lOMoARcPSD|4424963

lOMoARcPSD|4424963

lOMoARcPSD|4424963

lOMoARcPSD|4424963

Week 5

Dynamic Programming

lOMoARcPSD|4424963

