Week 1

If the number of odd degrees is 0 or 2, the connected path has an Euler path.
If 0, the path is a cycle: starts and finish at the same vertex.

Shortest path Dijkstra:
Look at each vertex, which is path shorter, and compare, choose the shortest path.

A spanning tree:

A spanning tree is a sub graph, which contains all the vertices and is a tree. A tree is
a connected graph without any cycles.

A graph may have more spanning trees.

Minimal spanning tree:
The spanning tree with the min cost for that graph

=>» Kruskal’s and Prim’s algorithm for minimal spanning tree

Kruskal’s algorithm:
1) Sortall the edges in decreasing order
2) Connect the edges in this order
3) Ifthere’s a cycle, don’t add the edge

Prim’s algorithm:
1) Start random
2) Choose the shortest path from your starting point
3) Look which path is the shortest from the vertices you already reached

Augmenting path has:
1) Non-full forward edges
2) Non-empty backward edges

Max flow: Ford Fulkerson algorithm:
For computing the max flow in flow network
From source to sink

1) Find an augmenting path

2) Compute the bottleneck capacity

3) Augment each edge and the total flow

Row capacity

0/10 4 010

0/10 [\,
& 1

(¢)— s

0/9

MaxFlow=MinCut
The running time only depends on the size of the network and not on the capacities.

Max flow: Edmonds-Karp-Dinitz (EKD) algorithm:

This algorithm applies the FF algorithm, but in each iteration it choose the s, t path
in the residual graph with the minimum number of arcs.

Min flow: The cycle cancelling algorithm:
1) Find a feasible flow of value v. Make the residual graph

2)

While there is negative cost cycle C in the residual graph:

=>» Add the largest possible flow over C

>

Update the residual graph

What kind of questions to expect?

R X 28 I 2R A X XX

I

Give the corresponding LP-formulation for the network

Make all the paths

Number them X1, X2, ..., Xn -> max X1, X2..

Number all the edges

Look at which path crosses the edge, and what the capacity is

You get St. X1 <= capacity passing edge

Give the maximum flow and it’s corresponding LP-solution

Maximum flow: look at all the edges capacity, add al the capacities of the
paths

Max flow: what passes all edges

Give the dual of this LP

Capacity times the path becomes -> min 2Y2 + 3Y2

St. path -> Y1 +Y3>=1

Find a solution to the dual with value equal to the primal solution found
Give an interpretation of this dual solution in terms of the network

Find a minimum cost flow by using the cycle cancelling algorithm.

Bipartite cycles:

v

Example of a bipartite graph without &

cycles

An arc a is called upward critical if increasing the capacity of a increases the value
of the maximum flow

An arc a is called downwards critical if decreasing the capacity of a decreases the
value of the maximum flow

Week 2

Pvs. NP:

A problem is in NP hard if it can be verified in polynomial time.
A problem is in P if a solution can either be found or proven in polynomial time.

P is a subset of NP. Not really correct!

A search problem is called NP-complete if all other search problems reduce to it.
A problem is called NP-hard if all other search problems reduce to it.
(Notice the difference, search problem and problem)

NP-complete problems can be seen as the hardest problems among all the search
problems.

The halting problem is an example of an NP-hard problem that is not in NP,

hard " NP-complete

Reductions:
The implication of A — B is twofold:
1. Any efficient algorithm for B can be used to solve A efficiently.

2. Solving problem B is at least as difficult as solving problem A (up to
a polynomial factor in running time).

Reductions are transitive (they compose):

(A-Band B—»>C) = A-C.

The class of search problem is also known as NP.

Every optimization problem can be modelled as a search problem.

Any algorithm for search problems can be used for optimization problems, with just
a polynomial factor loss in running time.

If we have an algorithm for the search problem, we also have an algorithm for the
decision version.

If A -> B then any algorithm for B can be used to solve A.
If A -> B and A is NP-complete, then B is NP-complete as well.

Optimization problem:

Easy. The optimal solution is a Easy: If we find a solution then YES,
solution for the search problem. Otherwise NO
Optimize | . 2 Search . < Decide
Binary search over all possible Usually possible. Approach depends
values. on the problem
Genuine search problem .
Easy: If we find a solution then YES,
Otherwise NO
Search . 4 Decide

Usually possible. Approach depends
on the problem

Figure 2: Three forms of optimization. Some search problems do not have
an optimization variant.

P (easy) NP-complete (hard)

Euler tour Rudrata tour

Shortest path Longest path

Chinese Postman Traveling Salesman

Linear Programming (LP) | Integer Linear Programming (ILP)
2SAT Satisfiability (SAT) and 3SAT
Minimum Spanning Tree | Vehicle Routing

Matching Load Balancing

Maximum Flow Knapsack

Minimum Cost Flow Vertex Cover

Figure 4: Although both lists are essentially infinitely long, most problems
in practice are hard. Some problems come in easy-hard pairs like Euler-
Hudrata and LP-ILP.

Important:

f=0(g) -> g goes up, f goes down

f=0(g) -> g goes down, f goes up
f=6(g) -> g and f goes same way
Week 3

See lecture nodes:

Approximation algorithms
Vertex cover
» Algorithm A: maximal matching
= Algorithm B: LP-rounding
* Generalization to Set Cover
K-Clustering: Greedy algorithm
The traveling salesman (TSP)
= Complexity of TSP
» Double tree algorithm
= Nearest addition algorithm
= Christofides’ algorithm

Approximation Algorithms

Definition 1. An a-approrimation elgorithm for an optimization problem is
a polynomial-time algorithm that, for each instance of the problem, produces a
solution with a value that s within a factor a of the optimal value.

For an instance I, we deonte by OpPT(I) the optimal value and by ALG(I) the
value returned by the algorithm.

To show that an algorithm is an a-approximation algorithm we need to show
three things:

(1) The algorithm runs in polynomial time.

(2) The algorithm always produces a feasible solution.

(3) For any isntance I, the value is within a factor « of the optimal value:
ALG(I) < aOpT(I) (for a minimization problem, & > 1)
ALG(I) 2 aOrT(I) (for a maximization problem, a < 1)

Approximation algorithms deal with optimization problems. The algorithm should
always return a solution with a value that is close to the optimal value.

1. Vertex cover

In this problem, we need to find for a given graph G = (V, E) a subset of vertices
such that each edge has an endpoint in the set. The goal is to minimize the
number of vertices in the subset.

2 3
[} —§
1
® &
5 4

Figure 1: The red vertices form a minimum vertez cover: S = {2,4,5}.

VERTEX COVER:
Instance: Graph G = (V, E).
Qutput: S C V such that each edge has at least one endpoint in S.
Goal: Minimize |S|.

It is a NP-hard problem. Thus there is no polynomial time algorithm that solves the
problem, unless P=NP.

Algorithm A: maximal matching
Find a maximal matching M and add all endpoints of the edges in M to S.
(Algorithm A is a 2-approximation algorithm)

Algorithm B: LP-rounding
LP’s can be solved in polynomial time

The vertex cover problem can easily be formulated as an integer linear program-
ming problem (ILP). Let n = |V| be the number of vertices.

(ILP) min Z = Eli
J:

gt & +Ij =21 for all (2,]) eE
z;€{0,1} forall jeV.

The vertex cover problem is A"P-hard which implies that the ILP above can
not be solved in polynomial time, unless P=A"P. However, the following LP-
relaxation (in which z; € {0,1} is replaced by z; > 0) can be solved efficiently.

(LP) min Z = '21 L5
i=

st. mi+z; =1 foral (i,j) e F
z; 20 forall jeV.

The idea of the algorithm is to solve (LP) and then round that solution in a
feasible solution for (IP). This technique is called LP-rounding.

(Instead of Xj in {0,1} -> Xj >=0)

Weighted Vertex Cover problem
In this case each vertex has a given weight Wj>0 and the goal is to minimize the

total weight of the cover.

w,=10 v=1
wr ®
w=l @
w %
ws=8 W,=2

Figure 4: Graph G with weights on the vertices is an instance of the weighted
Vertex Cover problem. The optimal solution has total weight 1 +1+2 = 4.

(LP) min Z =3 wjz,
i=1
si. zitz; =1 for all (i,j) € E

;20 for all 7 € V.

3] The value of the solution found is

12 n
Y wi=) wiE; 2wz =221 € 22}, p = 20PT.
j€s i=1 j=1

Generalization to Set Cover

2 o 3
e, ” |
1 €5 €5
€s
5 & 4

Figure 5: Graph G s an instance of the Vertex Cover problem. Equivalently,
we can write it as a Set Cover problem. For each vertex j there is a set S;
containing the adjacent edges: S; = {ej,es}, So = {e1. 0,65}, Sz = {es. €3},

5.1 = {83,64,66}, and Ss = {64,65}.

and assume that each item appears in at most f sets, for some constant f. The
LP-rounding algorithm for vertex cover problem applies here in the same way.

(ILP) min Z = Y wjz;
i=1
st. > ;21 foralli=1,...,m
Jiei €S
z; € {0,1} forall j =1,...,n.

The LP-relaxation is obtained by replacing z; € {0,1} by z; = 0.
(LP) min Z =) w;z;
=

J
st. Y z;jz2l foralli=1,...,m

Jei€S,

z; 20 forallia=1.,...9%.
Algorithm B (set cover):
Step 1: Solve the LP. — Optimal values z7],25,...,2),Z] p

Step 2: Let U be all j for which z} > 1/f.

What kind of questions to expect?

e Show with an example that algorithm A is a 2-approximation algorithm for
the weighted vertex cover problem
If true: ALG/OPT <=2
If not true: ALG/OPT >2

® (Give an optimal vertex cover for the graph

® (ive the ILP for this vertex cover
Min X1 + X2 +
St.X1+X2>=1
Xiin {01} fori=1, 2,

® (ive the LP relaxation for this vertex cover
Min X1 + X2 +
St.X1+X2>=1
Xi>=0fori=1,2,

® (ive a solution to the LP-relaxation which is strictly smaller/bigger than the
optimal value

2. The k-cluster problem.

K-CLUSTER:

Instance: Points X = {z,...,2,} with underlying distance metric d(,)
and an integer k.

Output: A partition of the points into k clusters Cy,...,C.

Goal: Minimize the maximum diameter of a clusters:

Minimize: max{ max_ d(rra,:cg,).}
] Zo, 2y €C;

OPT

Figure 6: Example. The cost of the solution is the maximum distance betwee
two points in a cluster.

Algorithm Greedy:
- Pick the first center u, arbitrarily.
- Fori=2to k:
Let p; be the point in X that is farthest from {p1,...,pi-1}.

- Create k clusters: C; is the set of all z € X whose closest center is y;.
Theorem 4. The Greedy algorithm is a 2-approzimation algorithm.

Exercise 3 Show by an example that the Greedy algorithm for k-clustering
is not better than a 2-approximation algorithm. That means, given an
example for which the value of the algorithm’s solution is twice the optimal
value.

Solution: Take for example 4 points on a line with distances as shown and
with k = 2. The optimal solution has maximum diameter equal to 1. If the
greedy algorithm starts with point vy, then vs will be the other center. The
clusters are {vi,v2.u3} and {v4} and the maximum diameter is 2.

The ratio ALc/OPT — 2 for € — 0.

\ { \ t o 3

The traveling salesman (TSP)
A complete graph with a cost Cij for every pair i, j. A cycle that goes trough every
vertex exactly once. The goal is to minimize the length of the cycle.

There are three algorithms for TSP:

Algorithm 1 (Double tree).

- Find a minimum spanning tree 7.

- Double all the edge of the tree. (See Figure 10).
- Find an Euler tour in the double tree.

- Apply shortcutting in order to turn the Euler tour into a Hamiltonian cycle.

Figure 10: The double tree (left) (for Algorithm 1) and the MST plus a matching
of the odd-degree nodes (right) (for Algorithm 3).

Algorithm 2 (Nearest addition).

- Pick an arbitrary point, say i,, as the first point.

- Let i; be the point nearest to i;. Make a directed tour from i; to iz and back
to i;. Let § = {i},i5}.

- Repeat the following until a feasible tour is found:

— Find a pair i € §,j ¢ S with minimum cost ¢;;. (In other words, find
the point j that is nearest to the already chosen set 5.) Insert j in the
tour after . Add j to S.

(=]

Figure 9: Iteration of the nearest addition algorithm.

Algorithm 3 (Christofides’ algorithm).

- Find a minimum spanning tree 7". Let O be the vertices of odd degree in 7'

- Find a minimum cost perfect matching of the vertices in O. Denote the edges
in this matching by M.

- Find an Euler tour in the graph 7"+ M.

- Apply shortcutting in order to turn the Euler tour into a Hamiltonian cycle.

Note that a perfect matching on O exists since |0O| is even. (Any graph contains
an even number of odd-degree points.) Also note that the cheapest perfect
matching can be found in polynomial time. (Not for this course.)

Clique

+ Clique
—Graph G = (V, E), a subset S of the vertices is
a clique if there is an edge between every pair
of vertices in S

Vertex Cover

» Definition:
Given an undirectedgraph G = (V, E), a subsetV'c Vis called
a vertexcoverof Giff foreveryedgee € E, e has at least
one endpoint incident at V"

» An Example ?ﬂ ~ [E

N

; e -
™ rl_-

[Yertex Cover

Maximal & Maximum Matchings

* Maximal Matching: A maximal matching in a graph
is a matching that cannot enlarged by adding an edge

* Maximum Matching: A maximum matching is a
matching of maximum size among all matchings in
the graph

Maximal Matching Maximum Matching
Graph isomorphism:
If there is isomorphism then there’s bijection between the vertex set of two graphs.

Rudrata’s path:
Visit all vertices of a graph exactly once.

Rudrata’s cycle:
Visit all vertices of a graph exactly once and end at the starting point

Hamilton cycle:
Visit all vertices of a graph exactly once and end at the starting point

Rudrata’s cycle = Hamilton cycle

Euler path:
Visit all edges of a graph exactly once.

Big 0 notation

Week 4

Scheduling
What is scheduling?
Scheduling concerns optimal allocation or assignment of resources, over time, to a

set of tasks/ activities/ jobs.

Resources (M): machines, people, space
Tasks (]): production, jobs, classes, flights

May be presented by Gantt Charts:

My S| | J3 \ Ji \ M, M;

My [h] [L] AW | 5»n [M

A[;?, J:S | Jl | J;; ’7:\[3 J[g _ f\[l ‘
Jy M,

* m machines i=1,....m
* njobs j=1,...,n
Job parameters:
* p; : processing time of job j
* p; : processing time of job j on machine i
(when processing time of job j depends on machine i)
* r;:release date of job j (earliest starting time)
* d;: due date (deadline) (=committed completion time)
* w;: weight of job j (importance)

Classification of Scheduling Problems

(Most) scheduling problems can be described by a three field
notation a ||y, where
a describes the machine environment

B describes the job characteristics, and
y describes the objective criterion to be minimized (or max.)

Remark: A field may contain more than one entry but may also be empty

Example:
11rl %G Single machine.
Jobs have release times.
Objective is minimizing the sum of the completion times.

Machine environment (a)

* Single machine (a = 1) Why single

machines?
* Identical parallel machines (a =P or Pm) * The

— m identical machines running in parrallel;
* If a =P, then the number of machines, m, is part of the input
* |f a = Pm, the value m is considered a constant

— each job consist of a single operation and this may be processed by
any of the machines for p; time units

* Unrelated parallel machines (o = R or Rm)

— m different machines in parallel
p; is the process time of job j if scheduled completely on machine i
simply arrive in practice

® Multi machine problems can often be decomposed into single machine
problems

® The form the basic for the design of the algorithms for more complicated
scheduling problems

Job characteristics (B)

release dates (r; in B field)

— if r; in B field, jobs may not start processing before their release date
— if rjis notin B field, jobs may start at any time

deadlines (d, in B field)

— if d;is in B field, each job j should finish before time d,

preemption (pmtn in B field)

— processing of a job on a machine may be interrupted and resumed at a

later time even on a different machine

* unit processing times (pj =1orp;=1inp field)
— each job (operation) has unit processing times

precedence constraints (precin [field)

— Ajob cannot start before some other job(s) are finished

— May be represented by an acyclic graph (vertices = jobs, arcs =

precedence relations)

I 1\,
Nt/ \ l/,\

3
@7 7

e N

PO

N\

For example: job 5 can not start before 1,2, 3 and 4 are completed.

jobs 1,2, and 4 can start immediately.

Objective function (y)

Notation:
— C;: completion time of job j
— L;=C - d,: lateness of job

Objectives:
— Makespan (v=Cprpax)
— Maximum lateness (V="Lna)
— Total completion time (v=13G)

Many more models in literarture !

Examples:

Total weighted completion time (v = Z;w,C;)

Crax = max {C,,...,.C.}
Loy = max{L,,...,.L.}

Job ’

1]] 2¢, e

2 2

Best solution. How to find it? —\\ 3 | S

(1,23) 2 749+14=30

(132) O 7+12414=33

213) 249414525

231) 247414233

(312 2| 5+12414=31

3.21) 2 5+7+14=26
0 1+ 2 3 4 5 8 T 8 8§ 10 11 12 13 14

1/ | Sum Cj is solved by ordering jobs in SPT order.
(Shortest Production Time)
This takes O(n log n) time.

2] A 2w;C; Job | B | W
1 1 7
Easier case: 1|p;=1] 2w,C, 2 1 2
3 1 5

OPT |13 2] swC=7+52+23=23

- Inan optimal schedule the jobs have to be ordered in decreasing
(non-increasing) order of their weights.
We have seen:
- If w;=w,=...=w, then smallest jobs go first (SPT).
- If p;= p,=...= p, then largest weight goes first.

For arbitrary w; and p; use Smith’s ratio rule:

Scheduling in non-increasing order of wj/pj (weighted
shortest processing time, WSPT) is optimal.

1 | Sum Wj(j is solved by using WSPT order.

Weighted Shortest Processing Time)

This takes O(n log n) time.

3) 1]|r, pmtn]| ZC,

Shortest Remaning Processing Time rule (SRPT)

At any moment in time, process the job with
smallest remaining processing time among the
available jobs.

NP = —
J At Shortest Remaining Processing Time first
3|6 (SRPT) rule:
J |14 8 each time that a job is completed, or at the
j‘ ’22 : next release date, the job to be processed
s Ly .
4|25 3 qext has the smallegt remaining processing
J,[30] 4 time among the available jobs.
J, |33] 1
I i I I I I i 1
| I I | | | l 1
I i | | I I i 1
| i I I | I | |
I H i I I I i I
1 ! I | I I I 1
0 2 4 6 810 12 14 16 18 20 2224 26 28 30 32 34 36 38 40 42 44 46
t ! i I | s W
| 1 1
3 J; q |1« RS -

i I

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

4 1]IL

Minimizing the maximum lateness.
Lateness of job j: L=C;-d; (=time after the due date)

max

Linax = Max{Ly,...,L.}

Earliest Due Date (EDD)
Schedule jobs in non-decreasing order of due date d..

5) 1]|n|ZC;

Algorithm A

Step 1: Apply SRPT. Let C,”, ...,C,"be the completion times.
Assume (relabel) C," < ...< C".

Step 2: Schedule jobs in order 1,2,.., n

Example [1 2 3 4 s
ri 10 1 3 9 12
pjle6 4 1 1 1

seer (1] 2 il 2 J[1 Jfa)[1 [fS§
Relabel |4 2 [2 | 4 3]l + [ES§
Final IT" 2 I |_3J| 4 "EJ

g A 6 8 9 10 12

6) 1 |prec|ZC

Example ’ 1 2 3 & 1 2 3
pi \ 5 5 1 1 \ 4
| 1 (3] 2 Bl 5 cj=5+6+11412-34
0 5 6 11 12

Theorem The problem 1| prec|Z C; is NP-hard (Proof omitted)

All with 1 machine:

Results part 1:

1) 1]]z¢ SPT is optimal

2) 1]]zIwC Smith’s ratio rule is optimal: Order by w,/p
3) 1]|r,pmtn| xC; SRPTisoptimal

4) 1]|L Earliest Due Date (EDD) is optimal

max

5) 1]r| G NP-hard. SRPT order gives 2-approximation.

6) 1|prec| ZC NP-hard. LP order gives 2-approximation.

1) P |pmtn| C,,,

I\lcf\zulghton's wrap-around rule :I

CLT max{p. E:-l P; /‘m}'
2. Construct a single-machine nonpreemptive schedule '

(assign n jobs to a single machine in an arbitrary order starting with the longest job)
3. Cut this single-machine schedule intom parts of length |C oy

1. Calculate the optimal makespan value

JEN | SAEN s ('] ¢+
I]] [}

1 |

M, 1 . 3 : :
mls] ¢« s ! |
o, [7 | l
T 1]

0 7 14 21

Incorrect !

" I i 0) YR D O
i | \ |
)]]]
]]]]

" ! ! !

", ! ! !

M3
1 1 1

w| 1 ERDINOEDN |
| | |
1] 1
1] 1

m, 1 :

|
|

mi 2 3| ¢ [s]s
ML

3) RIIZG

Unrelated machines
p;;: Processing time of job j depends on machinei.

Example p,;=p,,=1and p,,=p,,=2

Ml J1 Ml JZ
Mz J2 Mz '11
0 1 0 1

Optimal Not optimal

We can reduce R || 3 C; to a minimum cost perfect matching on a
complete bipartite graph.

Next, we can reduce this minimum cost perfect matching to a
mincost flow problem. (Friday’s tutorial)

We know from week 1 that mincost flow can be solved efficiently.

J I L 4 (111)
| — & (1.2)
2 9 .
: h- p: . / position h counted from
Jj ® Y > (i,h) the end on machine i
' I
: i
J ~ '
n w .
Cost of matching node (m,n)
J;to node (i,h).

4) Rm || C,.,

Fact P2 || C,,, is NP-hard (see exercises this week).
= Rm || C,.., is NP-hard too.

The LP-relaxation

(LP) min Z
m
5t Y Bp=1 for all jobs j

i=1

n

> zijpij < Z for all machines ¢
j=1

l‘ij Z 0 for all ’i,j

Algorithm:

Step 1. Solve LP-relaxation
Let S, be the integer jobs (x;=1)
Let S, be the fractional jobs (the other jobs).

Step 2. For S,: Assign job j to i if x;=1. Next,
For S,: Try all possible assignments and take the one
that gives the smallest makespan (C,,.,)-

Algorithm:

Step 1.

Step 2.

Example:

M,
M,

Solve LP-relaxation
Let S, be the integer jobs (x;=1)
Let S, be the fractional jobs (the other jobs).

For S,: Assign job j to i if x;=1. Next,
For S,: Try all possible assignments and take the one
that gives the smallest makespan (C,,,)-

pij [j=1 j=2 j=3

i=1 |1 9 5
i=2 |9 2 5
1 3 M, 3 3
2 3 M, 2
0 1 2 3 0 1 2 3 4
Optimal LP-solution Final schedule

Lemma 1: Algorithm runs in polynomial time (for m=constant)

* Step 1 LP can be solved in polynomial time.

* Step 2 Claim: There are at most m fractional jobs

Proof : Next slide
Given the claim:

Only O(m™) possible assignments to check in step 2.
This is constant for m is constant.

Results for part 2

1) P|pmtn|C_,, - McNaughton’s wrap arpund rule is optimal.
2) P||C,. - NP-hard.
- List scheduling is 2-approximation.
- LPT is 4/3-approximation.
3) R[] ZG - Reducible to min-cost perfect matching.
4) Rm || C.., _NP-hard.

- LP + enumerating schedules gives 2-approx.

2) Pl Cra

Minimising C,,.,

List Scheduling

Machine 1 |

Machine 2 |

Machine 3 |

O — — —

Time

List Scheduling

m

ac
I

w

o I
I H l
(O]

List schedule

Longest Processing Time (LPT) rule
Order jobs by processing time : p;> p,> ... 2 p,.
Apply list scheduling in this order.

Theorem: LPT is 4/3 - approximation for P| | C,.,
Proof : Fridav's tiitarial

M, 7 SPT-schedule
w2l s

M, 7 5 2 LPT-schedule

Week 5

Dynamic Programming
The idea of DP is always the same: A problems is solved by solving (smaller)

subproblems. Solutions to subproblems are stored in memory (the DP table). To
solve a subproblem we make use of the stored information on other subproblems.
In building and analyzing a DP ask yourself the following questions:

(1) What is the subproblem to solve? In other words: What will be in the
table?

(2) What is the optimal value, expressed in terms of the subproblems? In
other words: How do you find the optimal value once the table is filled?

(3) What are the initial values? In other words: What values can you fill in
right away?

{4) What is the recurrence used? In other words: Given the initial values,
how to compute the rest?

(5) What is the used space? This is often the size of the DP table. For
example, O(n) or O(n?). But sometimes we can do with less space, see

for example Exercise 1.

(6) What is the running time? This is usually (but not always) the size of the
table times the time ¥ .. takes to compute one value of the table.

