
Week 5: Approximation algorithms. CO2019/2020

This week: Section 9.2.1–9.2.3 of Dasgupta plus some extensions.

1. Vertex Cover

– Algorithm A: maximal matching

– Algorithm B: LP-rounding (not in Dasgupta)

– Generalization to Set Cover (not in Dasgupta)

2. k-Clustering: Greedy Algorithm

3. The Traveling Salesman Problem (TSP)

– Complexity of TSP

– Double tree algorithm

– Nearest addition algorithm (not in Dasgupta)

– Christofides’ algorithm (not in Dasgupta)

Approximation Algorithms

Definition 1. An α-approximation algorithm for an optimization problem is

a polynomial-time algorithm that, for each instance of the problem, produces a

solution with a value that is within a factor α of the optimal value.

For an instance I, we deonte by Opt(I) the optimal value and by Alg(I) the

value returned by the algorithm.

To show that an algorithm is an α-approximation algorithm we need to show

three things:

(1) The algorithm runs in polynomial time.

(2) The algorithm always produces a feasible solution.

(3) For any isntance I, the value is within a factor α of the optimal value:

Alg(I) ≤ αOpt(I) (for a minimization problem, α ≥ 1)

Alg(I) ≥ αOpt(I) (for a maximization problem, α ≤ 1)

1

1. Vertex cover

In this problem, we need to find for a given graph G = (V,E) a subset of vertices

such that each edge has an endpoint in the set. The goal is to minimize the

number of vertices in the subset.

Figure 1: The red vertices form a minimum vertex cover: S = {2, 4, 5}.

Vertex Cover:

Instance: Graph G = (V,E).

Output : S ⊆ V such that each edge has at least one endpoint in S.

Goal : Minimize |S|.

Algorithm A: Maximal matching

The Vertex Cover problem is NP-hard. Thus, there is no polynomial time al-

gorithm that solves the problem, unless P = NP. The next algorithm is a very

simple 2-approximation.

Algorithm A:

Find a maximal matching M and add all endpoints of the edges in M to S.

Theorem 1. Algorithm A is a 2-approximation algorithm.

Proof. We need to prove three things: [1] the running time is polynomial, [2] the

solution is feasible, [3] the value of the solution is at most 2 times the optimal

value.

[1] A maximal matching can be found by choosing the edges one by one until

no edges can be added anymore. Clearly, this can be done in polynomial time.

2

Figure 2: The red edges form a maximal matching: M = {(1, 2), (3, 4)}. The

solution given by the algorithm A is S = {1, 2, 3, 4}.

[2] Assume edge e is not covered. Then we can add e to M and get a bigger

matching. This is not possible since we assumed that M is maximal. [3] Since

the edges in M have no endpoints in common, we have |S| = 2|M |. Also,

any solution must use at least one point from each of the M edges, but since

these edges are independent (have no endpoints in common), we must have

Opt > |M |. We conclude that |S| = 2|M | 6 2Opt.

Algorithm B: Linear Programming

The vertex cover problem can easily be formulated as an integer linear program-

ming problem (ILP). Let n = |V | be the number of vertices.

(ILP) min Z =
n∑

j=1

xj

s.t. xi + xj > 1 for all (i, j) ∈ E
xj ∈ {0, 1} for all j ∈ V.

The vertex cover problem is NP-hard which implies that the ILP above can

not be solved in polynomial time, unless P=NP. However, the following LP-

relaxation (in which xj ∈ {0, 1} is replaced by xj ≥ 0) can be solved efficiently.

(LP) min Z =
n∑

j=1

xj

s.t. xi + xj > 1 for all (i, j) ∈ E
xj > 0 for all j ∈ V.

The idea of the algorithm is to solve (LP) and then round that solution in a

feasible solution for (IP). This technique is called LP-rounding.

3

Algorithm B:

Step 1: Solve the LP. → Optimal solution x∗1, x
∗
2, . . . , x

∗
n with value Z∗LP .

Step 2: Add j to solution S if x∗j > 1/2.

Figure 3: In this example, an optimal LP-solution is x∗j = 1/2 for all j. The

value of the LP-solution is 2.5. Which is strictly smaller than the optimal ILP-

solution which is 3. Algorithm B takes all five vertices: S = {1, 2, 3, 4, 5} and

has therefore value 5. The approximation ratio for this particular instance is

therefore 5/3. In general, the ratio is never more than 2, as stated in Theorem 2.

Theorem 2. Algorithm B is a 2-approximation algorithm.

Proof. We need to prove three things: [1] the running time is polynomial, [2] the

solution is feasible, [3] the value of the solution is at most 2 times the optimal

value.

[1]: True, since LP’s can be solved in polynomial time. [2]: We need to show

that every edge has an endpoint in S. Consider an arbitrary edge (i, j). We

have x∗i +x∗j > 1. But then, either x∗i > 1/2 or x∗j > 1/2 (or both). That means

that either i or j or both is added to S. [3] Denote the rounded solution by x̂.

That means: x̂j = 1 if x∗j > 1/2 and x̂j = 0 otherwise. In either case, x̂j 6 2x∗j .

The value of the solution found is

|S| =
n∑

j=1

x̂j 6 2

n∑
j=1

x∗j = 2Z∗LP 6 2Z∗ILP = 2Opt.

In the equation above, Z∗ILP is the optimal value of the integer linear program

ILP. (It is common to add a ∗ to indicate the optimal solution and optimal

value, as we do here.)

Weighted case Now consider the weighted vertex cover problem. In this case,

each vertex j has a given weight wj > 0 and the goal is to minimize the total

4

weight of the cover. The analysis of algorithm A does not go through (Check

this. Can you find an example where algorithm A gives a solution that is far

from optimal?). However, the second algorithm, B, does apply with only some

minor changes: In the LP, there is only an extra term wj and in the analysis

there is only a small change in [3]

Figure 4: Graph G with weights on the vertices is an instance of the weighted

Vertex Cover problem. The optimal solution has total weight 1 + 1 + 2 = 4.

(LP) min Z =
n∑

j=1

wjxj

s.t. xi + xj > 1 for all (i, j) ∈ E
xj > 0 for all j ∈ V.

[3] The value of the solution found is

∑
j∈S

wj =

n∑
j=1

wj x̂j 6 2

n∑
j=1

wjx
∗
j = 2Z∗LP 6 2Z∗ILP = 2Opt.

A generalization to Set Cover.

The Set Cover problem is a generalization of the Vertex Cover problem.

Set Cover:

Instance: Set of items (elements) E = {e1, . . . , em}, subsets S1, . . . , Sn ⊆
E, and weights w1, . . . , wn > 0.

Output : U ⊆ {1, 2, . . . , n} such that each item is covered: ∪
j∈U

Sj = E.

Goal : Minimize the weight of the cover:
∑
j∈U

wj .

The vertex cover problem is the special case of the set cover problem in which

each element ei appears in exactly 2 sets. Now consider the Set Cover problem

5

Figure 5: Graph G is an instance of the Vertex Cover problem. Equivalently,

we can write it as a Set Cover problem. For each vertex j there is a set Sj

containing the adjacent edges: S1 = {e1, e5}, S2 = {e1, e2, e6}, S3 = {e2, e3},
S4 = {e3, e4, e6}, and S5 = {e4, e5}.

and assume that each item appears in at most f sets, for some constant f . The

LP-rounding algorithm for vertex cover problem applies here in the same way.

(ILP) min Z =
n∑

j=1

wjxj

s.t.
∑

j:ei∈Sj

xj > 1 for all i = 1, . . . ,m

xj ∈ {0, 1} for all j = 1, . . . , n.

The LP-relaxation is obtained by replacing xj ∈ {0, 1} by xj ≥ 0.

(LP) min Z =
n∑

j=1

wjxj

s.t.
∑

j:ei∈Sj

xj > 1 for all i = 1, . . . ,m

xj > 0 for all j = 1, . . . , n.

Algorithm B (set cover):

Step 1: Solve the LP. → Optimal values x∗1, x
∗
2, . . . , x

∗
n, Z

∗
LP

Step 2: Let U be all j for which x∗j > 1/f.

Theorem 3. Algorithm B is an f -approximation algorithm for Set Cover.

Proof. [1] Clearly, the running time is polynomial since LP’s can be solved in

polynomial time and the second step can be done in linear time. (We only need

to check each x∗j once.)

[2] Any solution produced by this algorithm is feasible since each item appears

in at most f sets. That means, there are at most f variables in the constraint

for ei and at least one of the variables must has value > 1/f .

6

[3] Denote the rounded solution by x̂. That means, x̂j = 1 if x∗j > 1/f and

x̂j = 0 otherwise. In either case, x̂j 6 fx∗j . The value of the solution found is

∑
j∈U

wj =

n∑
j=1

x̂jwj 6 f

n∑
j=1

wjx
∗
j = fZ∗LP 6 fZ∗ILP = fOpt.

2. The k-cluster problem.

k-CLUSTER:

Instance: Points X = {x1, . . . , xn} with underlying distance metric d(,)

and an integer k.

Output : A partition of the points into k clusters C1, . . . , Ck.

Goal : Minimize the maximum diameter of a clusters:

Minimize: max
j

{
max

xa,xb∈Cj

d(xa, xb).

}

Figure 6: Example. The cost of the solution is the maximum distance between

two points in a cluster.

Algorithm Greedy:

- Pick the first center µ1 arbitrarily.

- For i = 2 to k:

Let µi be the point in X that is farthest from {µ1, . . . , µi−1}.
- Create k clusters: Ci is the set of all x ∈ X whose closest center is µi.

Theorem 4. The Greedy algorithm is a 2-approximation algorithm.

7

Figure 7: Example. The greedy solution if point 1 is chosen as the starting

point.

Proof. Clearly, the algorithm runs in polynomial time. Also, it returns a feasible

solution (a partition into k clusters). It remains to show that the value of the

greedy solution is at most twice the optimal value.

Assume we make one more greedy step: we select center µk+1. Let r be distance

of µk+1 to its nearest centers among µ1, . . . , µk.

Observation 1 : Since µk+1 was selected as the point at maximum distance from

{µ1, . . . , µk}, every point is at distance at most r from a center. Hence, for any

two points xa, xb in the same cluster Cj we have (using the triangle inequality)

d(xa, xb) ≤ d(xa, µj) + d(µj , xb) ≤ r + r = 2r ⇒ Alg ≤ 2r.

Observation 2 : The distance between any two of the centers µ1, . . . , µk+1 is at

least r. Further, any solution must have a cluster that contains two of those.

(Pigeon hole principle: There are k clusters and k + 1 centers so at least one

cluster has two centers.) So any solution has value at least r ⇒ Opt ≥ r.

From the two observations: Alg ≤ 2r ≤ 2Opt.

8

3. The traveling salesman problem.

TSP (symmetric):

Instance: Complete graph with a cost cij for every pair i, j.

Output : A cycle that goes through each point exactly once

Goal : Minimize the length (sum of the edge costs) of the cycle.

In the symmetric TSP, the costs cij and cji are the same. In the asymmetric

TSP, the cost cij may be different from cji. In that case, the cost depends

on the direction in which the edge is traversed. For both versions, one usually

considers the metric version, which means that the triangle inequality holds:

cik ≤ cij + cjk for every triple i, j, k.

Hardness of approximating the TSP

Theorem 5. The Hamiltonian Cycle problem is reducible to the TSP problem.

Proof. Given an instance G = (V,E) of HC, form an instance of TSP by defin-

ing cij = 1 for all edges (i, j) ∈ E and cij = 2 for all (i, j) /∈ E. If there is no HC

in G, then any TSP tour should use at least one of the edges of length 2. The

other edges on the tour have length at least 1. The total length of the optimal

TSP tour is at least n+ 1. Hence,

G has a HC ⇒ OptTSP = n.

G has no HC ⇒ OptTSP ≥ n+ 1.

We conclude that G has a HC if and only if OptTSP = n.

The Hamiltonian Cycle problem was one of the first problems shown to be

NP-complete. It followed immediately (from the reduction above) that TSP is

NP-complete (NP-hard) too. If we do not assume the triangle inequality, the

same reduction shows a stronger hardness result.

Theorem 6. For TSP without the triangle inequality assumption (the non-

metric TSP), there does not exist an α-approximation algorithm for any number

α > 1, assuming P 6= NP.

9

Figure 8: An instance G = (V,E) of the Hamiltonian Cycle problem and the

corresponding TSP instance. Graph G has no Hamiltonian Cycle. Thus, any

Hamiltonian Cycle in the graph to the right uses at least one of the dotted (red)

edges.

Proof. We follow the same proof as for Theorem 5 but instead of taking a cost 2

for the missing edges we take a much larger cost: C = αn. (Any larger number

will do too.) Assume there exists an α-approximation algorithm for some α ≥ 1.

We show that such an algorithm can be used to solve the Hamiltonian Cycle

(HC) problem in polynomial time.

If there is no HC in G, then any TSP tour should use at least one of the edges

of length αn. The other edges on the tour have length at least 1. The total

length of the optimal TSP tour is at least αn + (n − 1) ≥ αn + 1 (for n ≥ 2).

Hence,

G has a HC ⇒ OptTSP = n ⇒ Alg ≤ αn.

G has no HC ⇒ OptTSP ≥ αn+ 1 ⇒ Alg ≥ αn+ 1.

We see that G has a HC if and only if the value Alg of the solution given by the

algorithm is at most αn. Now assume we want to find a HC in a given graph.

If we would have an α-approximation algorithm for the non-metric TSP, then

(by the reduction above) we could use it to find a HC in G. That means, HC

reduces to non-metric TSP.

10

Three TSP algorithms

Algorithm 1 (Double tree).

- Find a minimum spanning tree T .

- Double all the edge of the tree. (See Figure 10).

- Find an Euler tour in the double tree.

- Apply shortcutting in order to turn the Euler tour into a Hamiltonian cycle.

Algorithm 2 (Nearest addition).

- Pick an arbitrary point, say i1, as the first point.

- Let i2 be the point nearest to i1. Make a directed tour from i1 to i2 and back

to i1. Let S = {i1, i2}.
- Repeat the following until a feasible tour is found:

– Find a pair i ∈ S, j /∈ S with minimum cost cij . (In other words, find

the point j that is nearest to the already chosen set S.) Insert j in the

tour after i. Add j to S.

Figure 9: Iteration of the nearest addition algorithm.

Algorithm 3 (Christofides’ algorithm).

- Find a minimum spanning tree T . Let O be the vertices of odd degree in T .

- Find a minimum cost perfect matching of the vertices in O. Denote the edges

in this matching by M .

- Find an Euler tour in the graph T +M .

- Apply shortcutting in order to turn the Euler tour into a Hamiltonian cycle.

Note that a perfect matching on O exists since |O| is even. (Any graph contains

an even number of odd-degree points.) Also note that the cheapest perfect

matching can be found in polynomial time. (Not for this course.)

11

Figure 10: The double tree (left) (for Algorithm 1) and the MST plus a matching

of the odd-degree nodes (right) (for Algorithm 3).

Analysis of the algorithms Let T be a minimum spanning tree. Denote by

Cost(T) the cost of the MST (i.e., the sum of the edge lengths). Let Opt be

the length of the shortest TSP tour.

Lemma 1. Cost(T) ≤ Opt.

Proof. Removing an arbitrary edge from the optimal TSP tour gives a path that

connects all points. Note that this is also spanning tree. Hence, the cost of the

MST (the cheapest spanning tree) is no more than Opt.

Theorem 7. Double tree is a 2-approximation algorithm.

Proof. The length of the tour before shortcutting is exactly twice the length of

the MST, which is at most twice Opt (by Lemma 1) The shortcutting step at

the end does not increase the length of the tour (since the triangle inequality

holds).

Theorem 8. Nearest addition is a 2-approximation algorithm.

Proof. The edges (i, j) with i ∈ S, j /∈ S that are selected in each iteration are

exactly the same edges that are selected by Prim’s MST algorithm. (See an

example on teh slides.)

Now consider an arbitrary iteration of the algorithm. Assume that pair (i, j) was

selected in that step. That means, j was the point nearest to S and this distance

is cij with i ∈ S. Let k be the point that follows i in the tour constructed so

far. By the triangle inequality cjk ≤ cji + cik ⇒ cjk − cik ≤ cji. Inserting j in

the tour increases its length (cost) by at most

cij + cjk − cik ≤ 2cij .

We conclude that the length of the tour is at most twice the length of the

minimum spanning tree. Now the proof follows from Lemma 1

12

Theorem 9. Christofides’ algorithm is a 3/2-approximation algorithm.

Proof. Consider an optimal tour. Now shortcut this tour to get a tour on O.

The length of this tour is at most Opt (by the triangle inequality). This tour is

composed of exactly two perfect matchings on O. Since the algorithm computes

the cheapest perfect matching, its cost is no more than Opt/2.

Cost(T) + Cost(M) ≤ 3

2
Opt.

The shortcutting step at the end of the algorithm does not increase the length

of the tour (since the triangle inequality holds).

Christofides’ algorithm is the best approximation algorithm known so far (in

terms of approximation ratio) for the metric TSP.

13

Exercises

Exercise 1 Show by an example that Algorithm A is not a 2-approximation

algorithm for the weighted vertex cover problem.

Exercise 2

(a) Give an optimal vertex cover for the graph below.

(b) Write down the ILP for this vertex cover instance.

(c) Write down the LP-relaxation for this vertex cover instance.

(d) For this instance, give a solution to the LP-relaxation which has a value

strictly smaller than the optimal value (given in (a)).

Exercise 3 Show by an example that the Greedy algorithm for k-clustering is

not better than a 2-approximation algorithm. That means, given an example

for which the value of the algorithm’s solution is twice the optimal value.

Exercise 4 Exercise 9.4 of Dasgupta.

Exercise 5 Recall the k-SPANNING TREE problem of Exercise 8.12 of Das-

gupta (week 2). We proved that the problem is NP-complete by a reduction

from Rudrata Path. Now use the same reduction to show that for α < 1.5

there is no α-approximation algorithm for k-SPANNING TREE (assuming that

P 6= NP).

Exercise 6 Exercise 9.6 of Dasgupta.

Hint: Argue that the cost of an optimal TSP tour on the terminals V ′ is at most

twice the cost of an optimal Steiner Tree (ST) on V ′:

OptTSP (V ′) ≤ 2OptST (V ′).

14

