Week 4: Scheduling. C02019/2020

Exercises

Exercise 1 Consider the following instance of the scheduling problem 1| 3, w;C}.

Give an optimal schedule and its value.

jobs |1 2 3 4
w;, |6 11 9 5
p; |35 7 4

Solution: £2 = 2 < 2L — 3 < Bs _— T < Pa — 4 The optimal order is is
wa 11 w1 6 w3 9 wa 5

2,1,3,4 which gives completion times Co = 3,C; = 8,(C5 = 15 and Cy = 19.
The value is w1Cq + wyCo + w3C3 +wyCy =6-8+11-5+9-15+5-19 = 333.

Exercise 2 Consider the following instance of the scheduling problem 1||Lyax.

Give an optimal schedule and its value.

jobs[1 2 3 4
p; |5 4 3 6
d; |3 5 11 12

Solution: Place the jobs in Earliest Due Date (EDD) order. Since d; < dy <
ds < dg4, the optimal order is 1,2,3,4. Lyax = max{Ci — di,Cy — do,C5 —
ds,Cy —ds} =max{5 —3,9—5,12—11,18 — 12} = 6.

(EDD is always optimal but other optimal schedules may be possible. Here,
2,1,3,4 is optimal as well.)

Exercise 3 De decision problems PARTITION and 3-PARTITION are both NP-

complete and are defined as follows:

PARTITION: An instance is given by positive numbers A and a1, as, . . ., a, with
> a; = 2A. Question: Is there an S C {1,2,...,n} such that), ga; = A.?

3-PARTITION: An instance is given by positive numbers B and by, bs, . .., b3,
with), b; = mB. Question: Is there a partition of {1,2,...,3m} into S1,S2,...,Sm

such that » ;g b; = Bforalli=1,...,m?

(a) Show that the PARTITION problem can be reduced to the scheduling prob-
lem P2||Cpax-

(b) Show that the 3-PARTITION problem can be reduced to the scheduling prob-
lem P||Cax-

Solution: (a) The two problems are almost identical. Given an instance of PAR-
TITION (with the notation as above) define an instance of P2||Cpax as follows.
Take n jobs with processing time p; = aj,7 = 1...n and let the number of

machines be m = 2.
There is an S with Zies a; = A. < There is a schedule of length < A.

Hence, if we can solve the scheduling problem efficiently, then we can solve the
Partition problem efficiently.

(b) Give an instance of 3-PARTITION (with the notation as above) define an
instance of P||Cpax as follows. Take 3m jobs with processing time p; = b;,j =

1...3m. Let m be the number of machines.
There exists a 3-Partition. < There is a schedule of length < B.

Hence, if we can solve the scheduling problem efficiently, then we can solve the
3-Partition problem efficiently.

Exercise 4 Consider the scheduling problem 1[r;| 3~ C; and the following al-
gorithm (SPT):

When the machine is not processing any job, then start the job that has the
smallest processing time p; among the available jobs. (We say that a job is
available if it has been released but not started yet).

Show by an example that this algorithm does not always lead to an optimal
schedule.

Solution: Many answers are possible. Take for example a long job that is followed
directly by a small job: p; = 10,73 =0 and ps = 1,75 = 1. The algorithm does
job 1 first. This gives C; = 10 and Cy = 11. The value is 10+ 11 = 21. However,
it is optimal to do job 2 first. This gives Cy = 2, = 12 with value 2412 = 14.

Exercise 5 Consider the scheduling problem P|r;, pmtn|Cmax. Give a poly-
nomial time algorithm which solves the problem by formulating it as a linear

program (LP). Assume for simplicity that 0 = ry < ry < --- < r, where n is

the number of jobs.

Hint: Use a variable Z for the length of the schedule. The objective then be-
comes: manimize Z. Take as variables x; (t = 1,2...,n) which denote the
amount of time spent on job j between time ry and riy1 (t < n—1) and between
rn and Z (t =n). Ezplain how an optimal LP-solution can be translated into a

feasible schedule.

Solution: Each job needs to be processed completely. This gives the following
constraint:

n
> xy; =p; for all jobs j.
=1

The amount of time spent in interval [rs, 7:41] is no more than the length of the
interval:

Tt re41 — e, for all jobs j and intervals t <n —1

IN A

Tnj Z — T, for all jobs j.

Another constraint is that the total processing time in the interval [ry, ri41] is

no more than the number of machines time the length of the interval:

xtj < m(rgg —re) for all intervals t <n—1

8
3
S,
IN

m(Z —ry)

Further, no job j can start before its release time r;:

x4 =0, forall t < j.

The complete LP becomes:

min Z (1)

s.t. thj = pj, for all jobs j (2)
t=1

Tpj < Tpgp1 — T forallt <n—1, and all j (3)

Tnj < Z—1y for all j (4)

thj <m(rep1 — 1) voorallt<n—1 (5)

j=1

anj <m(Z —ry,) (6)
j=1

x4; =0 forall t < j (7)
x5 20 for all ¢, j (8)

Note that an optimal solution z7;, Z* is not yet a feasible schedule since jobs
are not assigned to machines. A schedule can be obtained using McNaughton’s
wrap-around-rule. That rule was used for the problem P|pmitn|Cinq... Note
that we have such a scheduling problem for each interval. For interval ¢, the
processing times are z7; for j = 1,...,n. McNaughton’s wrap-around-rule gives

a schedule of length
* 1 - *
max{mﬁx{xtj} ;o Z Ty}
j=1

Constraints (3)+(5) ((4)+(6) for the last interval) ensure that the length of the
wrap-around-schedule for the interval is no more than the length of the interval,

Tt41 — Tt

In short: The algorithm first solves the LP and then a feasible schedule is found
using the wrap-around-rule for each of the n intervals.

Exercises from the slides.

Exercise 1 (Slides) Show (by an example) that SRPT is not optimal on
parallel machines.

SPRT on m parallel machine:
At any moment in time, process the m jobs with smallest remaining processing

time (or all jobs if there are less than m jobs available at that time.

Solution: The following instance works:

M,| 1 3 5 M,[1 2 4
SRPT OPT
My| 2 4 M, 3 5

0 1 2 3 4 0

N
w

Exercise 2 (Slides) This exercise refers to problem R||)" C; on the slides.
Form this exercise, it follows that this scheduling problem can be solved effi-
ciently. Let G = (V3 UV, E) be a complete bipartite graph with |Vi| < |Va|.
For any pair u € V; and v € V, let ¢y, be the cost of edge (u,v). Say that
a matching M is perfect if all vertices in V; are matched. Since the graph is
complete and |V;| < [V3], a perfect matching exists. In the MINCOST PERFECT
MATCHING problem we need to find a perfect matching for which the total cost
of the edges in the matching is minimized.

Show how the Mincost perfect matching problem can be reduced to a mincost
flow problem.

Hint: Remember from week 1 how the maximum matching problem can be re-

duced to the mazimum flow problem.

Solution: See the figure. To solve the mincost perfect matching problem we find
a minimum cost s-t-flow of value |V;|. This problem can be solved in polynomial
time. Since all capacities are 1, the optimum flow has only flow values 0 or 1

on the edges. This corresponds to a matching.

A\

Q.

%
. ® o,
. St 0
’bc’\'d .\ 4 \\7
OQQ /.
c‘O

u capacity =1, cost=c \ t
: A./

complete bipartite

Exercise 3 (Slides) (Difficult)
We have seen a 2-approximation for the problem 1|prec|) C;. Consider the
following generalizations:

o lprec| > w;C;

o 1|r;,prec|y C;

(a) Does the same algorithm and proof apply for the weighted version 1|prec| Y w,;C;?

(b) Try to apply the same technique to the problem 1|r;, prec| " C;. What is
the approximation ratio that you get?

Answer:(a) The algorithm and proof are exactly the same, except that we add

the weights. The complete proof is given here. The changes are in red.

Llprec| > w;C
For any set of jobs S C {1,2,...,n} denote p(S) = >_;cqp;-

Lemma 1. For any feasible schedule and for any set of jobs S C {1,2,...,n}:

ij % S5)2.

jeS

Proof. See slides. O

With the lemma above we see that the following LP is a relaxation of our

scheduling problem. Here, there is a variable C; for each jobs j.

(LP) min Z = Zl w;C;
J=
st. C;20 for all jobs j

Cr 2 Cj +pi for all pairs j — k

> p;C; > 3p(S)? for all sets S C {1,...,n}
Algorithm

1. Solve the LP. Let Z7 be the optimal value and let C; be the LP-values
and relabel s.t. Ch7 < Cy <....C,.

2. Place the jobs in the order 1,2,...,n. Let C’j’- be the completion time of
job 7 in this schedule.

Theorem 1. The algorithm above is a 2-approzimation algorithm for 1|prec|y w;C;

Proof. Consider an arbitrary job j. From the last constraint in the LP we see
that

C;Y pk=> Cipr =Y Cipy > %(Zpk)z = 05> %ZPI« (9)

k<y k<j k<j k<j k<j

Further, we have that in the final schedule C} = >, . px. Combining these, we
get
C; = < 2C;.

k<j

Now take the sum over all jobs:

Z w;C5 < 2 Z’zujCj =275 p < 20PT.
J J

(b) 1|rj,prec|d>.C;

Lemma 1 still holds. The LP is almost the same. We add one constraint. Note

that non-negativity, C; > 0, is now implied by the first constraint.
n
(LP) min Z=)C;j
j=1
st. Cj=>r;+Dpj for all jobs j
Cr =2 C;+pi for all pairs j — k

> p;iC; > 3p(S)? for all sets S C {1,...,n}
Jj€ES

Algorithm

1. Solve the LP. Let Z7 » be the optimal value and let C; be the LP-values
and relabel s.t. C7 < Cy <...C,,.

2. Schedule the jobs non-preemptively and as early as possible in the order
1,2,...,n. Denote the obtained schedule by o and let C’j’- be the comple-
tion time of job j in this schedule.

Theorem 2. The algorithm above is a 3-approzimation algorithm for 1|r;,prec|) C;

Proof. The first part of the proof is exactly the same as that of 1|r;| > C;.
Consider an arbitrary job j. Since jobs are scheduled in ¢ in the order 1,2, ...

we have that

(i) only jobs k < j are scheduled before time C7 in o.

Further, since at time Cj all jobs k& < j have been released and jobs are scheduled

as early as possible, we have that
(ii) there is no idle time in o between time C; and C.

From (i) and (ii) we see that

C; <G+ Zpk. (10)
k<j
Next we use agian (9) and combining this with (10): C} < C; + 2C; = 3Cj.

Now take the sum over all jobs:

> Cp<3Y Cj=3Z;p < 30PT.
J J

