Exercises

Exercise 1 Consider the following instance of the scheduling problem $1||\sum_j w_j C_j$. Give an optimal schedule and its value.

Solution: $\frac{p_2}{w_2} = \frac{5}{11} \le \frac{p_1}{w_1} = \frac{3}{6} \le \frac{p_3}{w_3} = \frac{7}{9} \le \frac{p_4}{w_4} = \frac{4}{5}$. The optimal order is is 2, 1, 3, 4 which gives completion times $C_2 = 3, C_1 = 8, C_3 = 15$ and $C_4 = 19$. The value is $w_1C_1 + w_2C_2 + w_3C_3 + w_4C_4 = 6 \cdot 8 + 11 \cdot 5 + 9 \cdot 15 + 5 \cdot 19 = 333$.

Exercise 2 Consider the following instance of the scheduling problem $1||L_{\text{max}}$. Give an optimal schedule and its value.

Solution: Place the jobs in Earliest Due Date (EDD) order. Since $d_1 < d_2 < d_3 < d_4$, the optimal order is 1, 2, 3, 4. $L_{\text{max}} = \max\{C_1 - d_1, C_2 - d_2, C_3 - d_3, C_4 - d_4\} = \max\{5 - 3, 9 - 5, 12 - 11, 18 - 12\} = 6$. (EDD is always optimal but other optimal schedules may be possible. Here, 2, 1, 3, 4 is optimal as well.)

Exercise 3 De decision problems Partition and 3-Partition are both NP-complete and are defined as follows:

PARTITION: An instance is given by positive numbers A and a_1, a_2, \ldots, a_n with $\sum_i a_i = 2A$. Question: Is there an $S \subset \{1, 2, \ldots, n\}$ such that $\sum_{i \in S} a_i = A$.?

3-PARTITION: An instance is given by positive numbers B and b_1, b_2, \ldots, b_{3m} with $\sum_i b_i = mB$. Question: Is there a partition of $\{1, 2, \ldots, 3m\}$ into S_1, S_2, \ldots, S_m such that $\sum_{j \in S_i} b_j = B$ for all $i = 1, \ldots, m$?

- (a) Show that the Partition problem can be reduced to the scheduling problem $P2||C_{\max}$.
- (b) Show that the 3-Partition problem can be reduced to the scheduling problem $P||C_{\max}$.

Solution: (a) The two problems are almost identical. Given an instance of PAR-TITION (with the notation as above) define an instance of $P2||C_{\text{max}}$ as follows. Take n jobs with processing time $p_j = a_j, j = 1...n$ and let the number of machines be m = 2.

There is an S with $\sum_{i \in S} a_i = A$. \Leftrightarrow There is a schedule of length $\leq A$.

Hence, if we can solve the scheduling problem efficiently, then we can solve the Partition problem efficiently.

(b) Give an instance of 3-PARTITION (with the notation as above) define an instance of $P||C_{\text{max}}$ as follows. Take 3m jobs with processing time $p_j = b_j, j = 1...3m$. Let m be the number of machines.

There exists a 3-Partition. \Leftrightarrow There is a schedule of length $\leq B$.

Hence, if we can solve the scheduling problem efficiently, then we can solve the 3-Partition problem efficiently.

Exercise 4 Consider the scheduling problem $1|r_j|\sum_j C_j$ and the following algorithm (SPT):

When the machine is not processing any job, then start the job that has the smallest processing time p_j among the available jobs. (We say that a job is available if it has been released but not started yet).

Show by an example that this algorithm does not always lead to an optimal schedule.

Solution: Many answers are possible. Take for example a long job that is followed directly by a small job: $p_1 = 10, r_1 = 0$ and $p_2 = 1, r_2 = 1$. The algorithm does job 1 first. This gives $C_1 = 10$ and $C_2 = 11$. The value is 10+11=21. However, it is optimal to do job 2 first. This gives $C_2 = 2, C_1 = 12$ with value 2+12=14.

Exercise 5 Consider the scheduling problem $P|r_j, pmtn|C_{\text{max}}$. Give a polynomial time algorithm which solves the problem by formulating it as a linear program (LP). Assume for simplicity that $0 = r_1 \le r_2 \le \cdots \le r_n$ where n is

the number of jobs.

Hint: Use a variable Z for the length of the schedule. The objective then becomes: minimize Z. Take as variables x_{tj} (t = 1, 2, ..., n) which denote the amount of time spent on job j between time r_t and r_{t+1} $(t \le n-1)$ and between r_n and Z (t = n). Explain how an optimal LP-solution can be translated into a feasible schedule.

Solution: Each job needs to be processed completely. This gives the following constraint:

$$\sum_{t=1}^{n} x_{tj} = p_j \quad \text{ for all jobs } j.$$

The amount of time spent in interval $[r_t, r_{t+1}]$ is no more than the length of the interval:

$$x_{tj} \leq r_{t+1} - r_t$$
, for all jobs j and intervals $t \leq n - 1$ $x_{nj} \leq Z - r_n$, for all jobs j .

Another constraint is that the total processing time in the interval $[r_t, r_{t+1}]$ is no more than the number of machines time the length of the interval:

$$\sum_{j=1}^{n} x_{tj} \leq m(r_{t+1} - r_t) \quad \text{for all intervals } t \leq n - 1$$

$$\sum_{j=1}^{n} x_{nj} \leq m(Z - r_n)$$

Further, no job j can start before its release time r_i :

$$x_{tj} = 0$$
, for all $t < j$.

The complete LP becomes:

$$\min Z \tag{1}$$

s.t.
$$\sum_{t=1}^{n} x_{tj} = p_j, \quad \text{for all jobs } j$$
 (2)

$$x_{tj} \le r_{t+1} - r_t$$
 for all $t \le n - 1$, and all j (3)

$$x_{nj} \le Z - r_n$$
 for all j (4)

$$\sum_{j=1}^{n} x_{tj} \le m(r_{t+1} - r_t) \qquad \text{voor all } t \le n - 1$$
 (5)

$$\sum_{i=1}^{n} x_{nj} \le m(Z - r_n) \tag{6}$$

$$x_{tj} = 0$$
 for all $t < j$ (7)

$$x_{tj} \geqslant 0$$
 for all t, j (8)

Note that an optimal solution x_{tj}^*, Z^* is not yet a feasible schedule since jobs are not assigned to machines. A schedule can be obtained using McNaughton's wrap-around-rule. That rule was used for the problem $P|pmtn|C_{max}$. Note that we have such a scheduling problem for each interval. For interval t, the processing times are x_{tj}^* for $j=1,\ldots,n$. McNaughton's wrap-around-rule gives a schedule of length

$$\max\{\max_{j}\{x_{tj}^*\}, \frac{1}{m}\sum_{j=1}^{n}x_{tj}^*\}.$$

Constraints (3)+(5) ((4)+(6) for the last interval) ensure that the length of the wrap-around-schedule for the interval is no more than the length of the interval, $r_{t+1} - r_t$.

In short: The algorithm first solves the LP and then a feasible schedule is found using the wrap-around-rule for each of the n intervals.

Exercises from the slides.

Exercise 1 (Slides) Show (by an example) that SRPT is not optimal on parallel machines.

SPRT on m parallel machine:

At any moment in time, process the m jobs with smallest remaining processing time (or all jobs if there are less than m jobs available at that time.

Solution: The following instance works:

The total completion time is 12 for SRPT and 11 for the optimal schedule.

SRPT M ₁	1	3		5	OPT	M ₁	1	2	4	
M_2	2		4		01 1	M_2	3	3	5]
0		1 2		3 4	ļ	Ó	•	1 2)	- 3

Exercise 2 (Slides) This exercise refers to problem $R||\sum C_j$ on the slides. Form this exercise, it follows that this scheduling problem can be solved efficiently. Let $G=(V_1\cup V_2,E)$ be a complete bipartite graph with $|V_1|\leq |V_2|$. For any pair $u\in V_1$ and $v\in V_2$ let c_{uv} be the cost of edge (u,v). Say that a matching M is perfect if all vertices in V_1 are matched. Since the graph is complete and $|V_1|\leq |V_2|$, a perfect matching exists. In the MINCOST PERFECT MATCHING problem we need to find a perfect matching for which the total cost of the edges in the matching is minimized.

Show how the Mincost perfect matching problem can be reduced to a mincost flow problem.

Hint: Remember from week 1 how the maximum matching problem can be reduced to the maximum flow problem.

Solution: See the figure. To solve the mincost perfect matching problem we find a minimum cost s-t-flow of value $|V_1|$. This problem can be solved in polynomial time. Since all capacities are 1, the optimum flow has only flow values 0 or 1 on the edges. This corresponds to a matching.

Exercise 3 (Slides) (Difficult)

We have seen a 2-approximation for the problem $1|prec|\sum C_j$. Consider the following generalizations:

- $1|prec|\sum w_jC_j$
- $1|r_j, prec| \sum C_j$
- (a) Does the same algorithm and proof apply for the weighted version $1|prec|\sum w_jC_j$?
- (b) Try to apply the same technique to the problem $1|r_j, prec| \sum C_j$. What is the approximation ratio that you get?

Answer:(a) The algorithm and proof are exactly the same, except that we add the weights. The complete proof is given here. The changes are in red.

$$1|prec|\sum \mathbf{w_j}C_j$$

For any set of jobs $S \subseteq \{1, 2, \dots, n\}$ denote $p(S) = \sum_{j \in S} p_j$.

Lemma 1. For any feasible schedule and for any set of jobs $S \subseteq \{1, 2, ..., n\}$:

$$\sum_{j \in S} p_j C_j \geqslant \frac{1}{2} p(S)^2.$$

Proof. See slides.

With the lemma above we see that the following LP is a relaxation of our scheduling problem. Here, there is a variable C_j for each jobs j.

(LP) min
$$Z = \sum_{j=1}^{n} \mathbf{w}_{j} C_{j}$$

 $s.t.$ $C_{j} \geqslant 0$ for all jobs j
 $C_{k} \geqslant C_{j} + p_{k}$ for all pairs $j \rightarrow k$
 $\sum_{j \in S} p_{j} C_{j} \geqslant \frac{1}{2} p(S)^{2}$ for all sets $S \subseteq \{1, \dots, n\}$

Algorithm

- 1. Solve the LP. Let Z_{LP}^* be the optimal value and let C_j be the LP-values and relabel s.t. $C_1 \leqslant C_2 \leqslant \ldots C_n$.
- 2. Place the jobs in the order 1, 2, ..., n. Let C'_j be the completion time of job j in this schedule.

Theorem 1. The algorithm above is a 2-approximation algorithm for $1|prec|\sum w_j C_j$

Proof. Consider an arbitrary job j. From the last constraint in the LP we see that

$$C_j \sum_{k \leqslant j} p_k = \sum_{k \leqslant j} C_j p_k \geqslant \sum_{k \leqslant j} C_k p_k \ge \frac{1}{2} (\sum_{k \leqslant j} p_k)^2 \quad \Rightarrow \quad C_j \ge \frac{1}{2} \sum_{k \leqslant j} p_k. \tag{9}$$

Further, we have that in the final schedule $C'_j = \sum_{k \leq j} p_k$. Combining these, we get

$$C_j' = \sum_{k \le j} p_k \le 2C_j.$$

Now take the sum over all jobs:

$$\sum_{j} \underline{w_j} C_j' \leqslant 2 \sum_{j} \underline{w_j} C_j = 2 Z_{LP}^* \leqslant 2 \text{Opt.}$$

(b) $1|r_i, prec|\sum C_i$

Lemma 1 still holds. The LP is almost the same. We add one constraint. Note

that non-negativity, $C_j \ge 0$, is now implied by the first constraint.

(LP) min
$$Z = \sum_{j=1}^{n} C_j$$

 $s.t.$ $C_j \geqslant r_j + p_j$ for all jobs j
 $C_k \geqslant C_j + p_k$ for all pairs $j \to k$
 $\sum_{j \in S} p_j C_j \geqslant \frac{1}{2} p(S)^2$ for all sets $S \subseteq \{1, \dots, n\}$

Algorithm

- 1. Solve the LP. Let Z_{LP}^* be the optimal value and let C_j be the LP-values and relabel s.t. $C_1 \leqslant C_2 \leqslant \ldots C_n$.
- 2. Schedule the jobs non-preemptively and as early as possible in the order $1, 2, \ldots, n$. Denote the obtained schedule by σ and let C'_j be the completion time of job j in this schedule.

Theorem 2. The algorithm above is a 3-approximation algorithm for $1|r_j, prec| \sum C_j$

Proof. The first part of the proof is exactly the same as that of $1|r_j| \sum C_j$. Consider an arbitrary job j. Since jobs are scheduled in σ in the order 1, 2, ... we have that

(i) only jobs $k \leqslant j$ are scheduled before time C_j' in $\sigma.$

Further, since at time C_j all jobs $k \leq j$ have been released and jobs are scheduled as early as possible, we have that

(ii) there is no idle time in σ between time C_j and C'_j .

From (i) and (ii) we see that

$$C_j' \leqslant C_j + \sum_{k \le j} p_k. \tag{10}$$

Next we use agian (9) and combining this with (10): $C'_j \leq C_j + 2C_j = 3C_j$. Now take the sum over all jobs:

$$\sum_{j} C_j' \leqslant 3 \sum_{j} C_j = 3Z_{LP}^* \leqslant 3 \text{Opt.}$$