
Week 4: Scheduling. CO2019/2020

Exercises

Exercise 1 Consider the following instance of the scheduling problem 1||
∑

j wjCj .

Give an optimal schedule and its value.

jobs 1 2 3 4

wj 6 11 9 5

pj 3 5 7 4

Solution: p2

w2
= 5

11 ≤
p1

w1
= 3

6 ≤
p3

w3
= 7

9 ≤
p4

w4
= 4

5 . The optimal order is is

2, 1, 3, 4 which gives completion times C2 = 3, C1 = 8, C3 = 15 and C4 = 19.

The value is w1C1 +w2C2 +w3C3 +w4C4 = 6 · 8 + 11 · 5 + 9 · 15 + 5 · 19 = 333.

Exercise 2 Consider the following instance of the scheduling problem 1||Lmax.

Give an optimal schedule and its value.

jobs 1 2 3 4

pj 5 4 3 6

dj 3 5 11 12

Solution: Place the jobs in Earliest Due Date (EDD) order. Since d1 < d2 <

d3 < d4, the optimal order is 1, 2, 3, 4. Lmax = max{C1 − d1, C2 − d2, C3 −
d3, C4 − d4} = max{5− 3, 9− 5, 12− 11, 18− 12} = 6.

(EDD is always optimal but other optimal schedules may be possible. Here,

2, 1, 3, 4 is optimal as well.)

Exercise 3 De decision problems Partition and 3-Partition are both NP-

complete and are defined as follows:

PARTITION: An instance is given by positive numbers A and a1, a2, . . . , an with∑
i ai = 2A. Question: Is there an S ⊂ {1, 2, . . . , n} such that

∑
i∈S ai = A.?

3-PARTITION: An instance is given by positive numbers B and b1, b2, . . . , b3m

with
∑

i bi = mB. Question: Is there a partition of {1, 2, . . . , 3m} into S1, S2, . . . , Sm

such that
∑

j∈Si
bj = B for all i = 1, . . . ,m?

1



(a) Show that the Partition problem can be reduced to the scheduling prob-

lem P2||Cmax.

(b) Show that the 3-Partition problem can be reduced to the scheduling prob-

lem P ||Cmax.

Solution: (a) The two problems are almost identical. Given an instance of PAR-

TITION (with the notation as above) define an instance of P2||Cmax as follows.

Take n jobs with processing time pj = aj , j = 1 . . . n and let the number of

machines be m = 2.

There is an S with
∑

i∈S ai = A. ⇔ There is a schedule of length ≤ A.

Hence, if we can solve the scheduling problem efficiently, then we can solve the

Partition problem efficiently.

(b) Give an instance of 3-PARTITION (with the notation as above) define an

instance of P ||Cmax as follows. Take 3m jobs with processing time pj = bj , j =

1 . . . 3m. Let m be the number of machines.

There exists a 3-Partition. ⇔ There is a schedule of length ≤ B.

Hence, if we can solve the scheduling problem efficiently, then we can solve the

3-Partition problem efficiently.

Exercise 4 Consider the scheduling problem 1|rj |
∑

j Cj and the following al-

gorithm (SPT):

When the machine is not processing any job, then start the job that has the

smallest processing time pj among the available jobs. (We say that a job is

available if it has been released but not started yet).

Show by an example that this algorithm does not always lead to an optimal

schedule.

Solution: Many answers are possible. Take for example a long job that is followed

directly by a small job: p1 = 10, r1 = 0 and p2 = 1, r2 = 1. The algorithm does

job 1 first. This gives C1 = 10 and C2 = 11. The value is 10+11 = 21. However,

it is optimal to do job 2 first. This gives C2 = 2, C1 = 12 with value 2+12 = 14.

Exercise 5 Consider the scheduling problem P |rj , pmtn|Cmax. Give a poly-

nomial time algorithm which solves the problem by formulating it as a linear

program (LP). Assume for simplicity that 0 = r1 ≤ r2 ≤ · · · ≤ rn where n is

2



the number of jobs.

Hint: Use a variable Z for the length of the schedule. The objective then be-

comes: minimize Z. Take as variables xtj (t = 1, 2 . . . , n) which denote the

amount of time spent on job j between time rt and rt+1 (t ≤ n−1) and between

rn and Z (t = n). Explain how an optimal LP-solution can be translated into a

feasible schedule.

Solution: Each job needs to be processed completely. This gives the following

constraint:
n∑

t=1
xtj = pj for all jobs j.

The amount of time spent in interval [rt, rt+1] is no more than the length of the

interval:

xtj ≤ rt+1 − rt, for all jobs j and intervals t 6 n− 1

xnj ≤ Z − rn, for all jobs j.

Another constraint is that the total processing time in the interval [rt, rt+1] is

no more than the number of machines time the length of the interval:

n∑
j=1

xtj ≤ m(rt+1 − rt) for all intervals t 6 n− 1

n∑
j=1

xnj ≤ m(Z − rn)

Further, no job j can start before its release time rj :

xtj = 0, for all t < j.

3



The complete LP becomes:

min Z (1)

s.t.

n∑
t=1

xtj = pj , for all jobs j (2)

xtj ≤ rt+1 − rt for all t 6 n− 1, and all j (3)

xnj ≤ Z − rn for all j (4)

n∑
j=1

xtj ≤ m(rt+1 − rt) voor all t 6 n− 1 (5)

n∑
j=1

xnj ≤ m(Z − rn) (6)

xtj = 0 for all t < j (7)

xtj > 0 for all t, j (8)

Note that an optimal solution x∗tj , Z
∗ is not yet a feasible schedule since jobs

are not assigned to machines. A schedule can be obtained using McNaughton’s

wrap-around-rule. That rule was used for the problem P |pmtn|Cmax. Note

that we have such a scheduling problem for each interval. For interval t, the

processing times are x∗tj for j = 1, . . . , n. McNaughton’s wrap-around-rule gives

a schedule of length

max{max
j
{x∗tj} ,

1

m

n∑
j=1

x∗tj}.

Constraints (3)+(5) ((4)+(6) for the last interval) ensure that the length of the

wrap-around-schedule for the interval is no more than the length of the interval,

rt+1 − rt.

In short: The algorithm first solves the LP and then a feasible schedule is found

using the wrap-around-rule for each of the n intervals.

4



Exercises from the slides.

Exercise 1 (Slides) Show (by an example) that SRPT is not optimal on

parallel machines.

SPRT on m parallel machine:

At any moment in time, process the m jobs with smallest remaining processing

time (or all jobs if there are less than m jobs available at that time.

Solution: The following instance works:

jobs 1 2 3 4 5

rj 0 0 0 2 2

pj 1 1 2 1 1

The total completion time is 12 for SRPT and 11 for the optimal schedule.

Exercise 2 (Slides) This exercise refers to problem R||
∑
Cj on the slides.

Form this exercise, it follows that this scheduling problem can be solved effi-

ciently. Let G = (V1 ∪ V2, E) be a complete bipartite graph with |V1| ≤ |V2|.
For any pair u ∈ V1 and v ∈ V2 let cuv be the cost of edge (u, v). Say that

a matching M is perfect if all vertices in V1 are matched. Since the graph is

complete and |V1| ≤ |V2|, a perfect matching exists. In the Mincost Perfect

Matching problem we need to find a perfect matching for which the total cost

of the edges in the matching is minimized.

Show how the Mincost perfect matching problem can be reduced to a mincost

flow problem.

Hint: Remember from week 1 how the maximum matching problem can be re-

duced to the maximum flow problem.

Solution: See the figure. To solve the mincost perfect matching problem we find

a minimum cost s-t-flow of value |V1|. This problem can be solved in polynomial

time. Since all capacities are 1, the optimum flow has only flow values 0 or 1

on the edges. This corresponds to a matching.

5



Exercise 3 (Slides) (Difficult)

We have seen a 2-approximation for the problem 1|prec|
∑
Cj . Consider the

following generalizations:

• 1|prec|
∑
wjCj

• 1|rj , prec|
∑
Cj

(a) Does the same algorithm and proof apply for the weighted version 1|prec|
∑
wjCj?

(b) Try to apply the same technique to the problem 1|rj , prec|
∑
Cj . What is

the approximation ratio that you get?

Answer:(a) The algorithm and proof are exactly the same, except that we add

the weights. The complete proof is given here. The changes are in red.

1|prec|
∑

wjCj

For any set of jobs S ⊆ {1, 2, . . . , n} denote p(S) =
∑

j∈S pj .

Lemma 1. For any feasible schedule and for any set of jobs S ⊆ {1, 2, . . . , n}:∑
j∈S

pjCj >
1

2
p(S)2.

Proof. See slides.

6



With the lemma above we see that the following LP is a relaxation of our

scheduling problem. Here, there is a variable Cj for each jobs j.

(LP) min Z =
n∑

j=1

wjCj

s.t. Cj > 0 for all jobs j

Ck > Cj + pk for all pairs j → k∑
j∈S

pjCj > 1
2p(S)2 for all sets S ⊆ {1, . . . , n}

Algorithm

1. Solve the LP. Let Z∗LP be the optimal value and let Cj be the LP-values

and relabel s.t. C1 6 C2 6 . . . Cn.

2. Place the jobs in the order 1, 2, . . . , n. Let C ′j be the completion time of

job j in this schedule.

Theorem 1. The algorithm above is a 2-approximation algorithm for 1|prec|
∑
wjCj

Proof. Consider an arbitrary job j. From the last constraint in the LP we see

that

Cj

∑
k6j

pk =
∑
k6j

Cjpk >
∑
k6j

Ckpk ≥
1

2
(
∑
k6j

pk)2 ⇒ Cj ≥
1

2

∑
k6j

pk. (9)

Further, we have that in the final schedule C ′j =
∑

k6j pk. Combining these, we

get

C ′j =
∑
k6j

pk ≤ 2Cj .

Now take the sum over all jobs:∑
j

wjC
′
j 6 2

∑
j

wjCj = 2Z∗LP 6 2Opt.

(b) 1|rj , prec|
∑
Cj

Lemma 1 still holds. The LP is almost the same. We add one constraint. Note

7



that non-negativity, Cj > 0, is now implied by the first constraint.

(LP) min Z =
n∑

j=1

Cj

s.t. Cj > rj + pj for all jobs j

Ck > Cj + pk for all pairs j → k∑
j∈S

pjCj > 1
2p(S)2 for all sets S ⊆ {1, . . . , n}

Algorithm

1. Solve the LP. Let Z∗LP be the optimal value and let Cj be the LP-values

and relabel s.t. C1 6 C2 6 . . . Cn.

2. Schedule the jobs non-preemptively and as early as possible in the order

1, 2, . . . , n. Denote the obtained schedule by σ and let C ′j be the comple-

tion time of job j in this schedule.

Theorem 2. The algorithm above is a 3-approximation algorithm for 1|rj , prec|
∑
Cj

Proof. The first part of the proof is exactly the same as that of 1|rj |
∑
Cj .

Consider an arbitrary job j. Since jobs are scheduled in σ in the order 1, 2, ...

we have that

(i) only jobs k 6 j are scheduled before time C ′j in σ.

Further, since at time Cj all jobs k 6 j have been released and jobs are scheduled

as early as possible, we have that

(ii) there is no idle time in σ between time Cj and C ′j .

From (i) and (ii) we see that

C ′j 6 Cj +
∑
k≤j

pk. (10)

Next we use agian (9) and combining this with (10): C ′j 6 Cj + 2Cj = 3Cj .

Now take the sum over all jobs:∑
j

C ′j 6 3
∑
j

Cj = 3Z∗LP 6 3Opt.

8


