Week 3: Dynamic Programming. C02019/2020

Exercise 6.1 We distinguish the 6 steps:
(1) The hint suggests to use a state S(j) which is the value of the maximum
contiguous subsequence ending in the j-th number of the list.

(2) If a; > 0 for at least one j then the optimal value is max; S(j).
If a; < 0 for all j then the optimal solution is the empty sequence, which
has value zero by definition.

In short, the optimal value is max{0, max; S(j)}.
(3) Inmitial value: S(1) = ay.
(4) The recursion :

S(i+1) = S@U)+aj1 ifS() >0, and
SG+1) = a1 if () < 0.

Equivalently, S(j + 1) = max{a;j4+1,5(j) + aj41} for j=1,...,n—1.

(5) In the DP table we store S1,S5%,...,5, so the size of the table is O(n).
However, you can do with less space since you only need to know .S; and
a;+1 to compute Sj41. Also, we updte the maximum value S; over the first

j numbers. The total work space is needed is only O(1).
(6) The running time is O(n) since computing one subproblem takes O(1) time
and there are O(n) subproblems.

Exercise 6.2

(1) Define f(4) as the minimum cost for traveling from location 1 to location i.
(2) The optimal value is given by f(n).

(3) f(1)=0 (Cost for going from point 1 to point 1).

(

4) The following recursion holds for 2 < i < n:

£(i) = min{ f(j) + (200 — (a; - a;))* 1<) <i}.



(5) The size of the DP table is O(n). Unlike the previous exercise, we need to
keep all values in memory since to compute f(i) we need to know all f(j)
for j < i. The work space needed is O(n).

(6) The time used is O(n?) since it takes O(n) time to compute each if the O(n)
values.

Exercise 6.3

(1) Let f(i) be the maximum profit over the first ¢ locations when we open
location i (1 <i < n).

(2) The optimal value is max{f(i) | 1 <¢ < n}.

(3) £(1) = pr.

(4) (i) = pi + max;{f(j) | mi —m; > k}.

(5) The size of the DP-table is O(n).

(6) The time to compute one value in the table is O(n). Hence, the total time

is O(n?).

A slightly different DP is as follows. We remove the restriction in the subproblem

that location ¢ must be opened.

(1) Let f(i) be the maximum profit over the first ¢ locations (1 < i < n).

(2) The optimal value is f(n).

(3) f(1) =p1.

(4) F() = max {£(i 1), pi +max; () | mi —m; > k}}.

(5) The size of the DP-table is O(n).

(6) The time to compute one value in the table is O(n) so the total time is
O(n?).

Exercise 6.4 Say that a substring is valid if it is a sequence of words.

(1) Define f(i) = true if s[1..7] is a valid substring and let f(i) = false otherwise.



(2)
3)
(4)

()
(6)

s is a valid string iff f(n) = true.
f(0) = true.

For i = 1...n, let f(i) = true if there is a j € {0,...,7 — 1} such that
f(7) =true and s[j + 1...4] is a valid word.

f(@) = false otherwise.
Size of DP table is O(n).

The time to compute one value in the table is O(n). Hence, the total time
is O(n?).

Exercise 6.5 (a) There are 8 different patterns for a single column. (A ‘1’

means a pebble is placed at that position.)

(b)
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Denote the 8 different patterns by type t =1,2,...,8.

(1)

Let f(k,t) be the total profit that can be obtained from the first k& columns
under the restriction that the k-th column is of type ¢ (k = 1,...,n and
t=1,...,8).

The optimal value is max{f(n,t) | 1 <t < 8}.

Let Profit(k,t) be the profit obtained from column k if pattern ¢ is chosen.
Then, the initial values are f(1,t) = Profit(1,¢t) for all ¢.

For each type t and 2 < k < n the recursion is

f(k,t) = Profit(k,t) + max{f(k — 1,s) | s compatible with ¢}

The number of subproblems is O(n) but the workspace needed to compute
the optimal value is only O(1). However, if we want to find not just the
optimal value but the optimal solution then we need O(n) for the space

since the optimal solution is of size O(n).

The time to compute one value in the DP-table is O(1). So the total time
is O(n).



NB. In general, when we have m rows, the number of types is 220", (That
means, at least 2¢™ for some constant ¢ > 0). Then, the running time of this
DP-approach is not polynomial any more.

Exercise 6.6 Let s = s155. .. s, be the string and denote by sli..j] the substring

SiSi41 -85

(1) Define f(i,j,v) = true iff substring s[i..j] can be turned into v, where
v € {a,b,c} and 1 <i<j<n.

(2) The answer is ‘yes’ iff f(1,n,a) = true.

(3) f(i,4,v) = true iff s; = v, where v € {a,b,c} and 1 <i <n.

(4) f(i,4,v) = true iff there is some k € {i,...,j— 1} and v1, v € {a,b,c} such
that:

e f(i,k,v1) = true and
o f(k+1,j,v9) = true and
® ViV = V.

(5) The size of the table is O(n?).

(6) The time to compute one value in the DP-table is O(n). So the total time
is O(n?).

Exercise 6.7 Let x = z124...x, be the string and denote by x[i..j] the sub-
string @;x;11 ...x;. Define z[i..j] as the empty string if j < i.

(1) Define f(i,7) as the length of the longest palindrome in substring xz[i..j].
(2) The optimal value is f(1,n).

(3) f(i,i)=1and f(i,i—1)=0foralli e {1,...,n}.
(We need these initial values for step 4)

(4) The recursion for 1 < i < j < n is as follows.

if.’L‘i:J?jZ

else:

[, 5) = max{f(i,j = 1), f(i + 1,j)}.



(5) The size of the table is O(n?).
(6) The time to compute one value in the DP-table is O(1). So the total time
is O(n?).

Exercise 6.8 Denote by z[1..i] the substring zyx2 ...2; and denote by y[1..j]
the substring y1y2 ... yj.

(1) Let f(4,7) be the length of the longest common suffiz of x[1..7] and y[1..5].
(2) The optimal value is max; ;{f(3,5) | 1 <i<n,1 <j <m}.

(3) f(i,j) =0ifi=0orj=0.

(4) The recursion for i € {1,...,n} and j € {1,...,m} is

if x; =y, :
else:

[, 3) = 0.

(5) The size of the table is O(n?).

(6) The time to compute one value in the DP-table is O(1). So the total time
is O(n?).

Exercise 6.9

(1) Let f(4,4) be the minimum cost for cutting a string of length i exactly j
times (j < 9).

(2) The optimal value is f(n,m).

(3) f(1,0) =0.

(4) To compute f(i,j) we try all possible values k such that the first cut splits
the string in strings of length k£ and i — k. Further, we try all possible values
h for the number of cuts in the string of length k. Then, the other string is
cut j —h — 1 times.

FG0,j) =i+ mind f(k b) + f(i =k, j —h =1},

where the minimum is taken over all k¥ and h such that:



e l<k<i—1,
(cut in two strings of length k and i — k.)

e 0<h<k-—1},

(a string of length k can be cut at most k — 1 times.)

e 0<j—h—-1<i—k—1}

(a string of length ¢ — k can be cut at most i — k — 1 times.)

(5) The size of the table is O(nm).

(6) The time to compute one value in the DP-table is O(nm). So the total time
is O(n?*m?).

Exercise 6.10

(1) f(i,4) is the probability of exactly j times head among the first ¢ coins
(0<j<i<n).

(2) The value we want to compute is f(n, k).

(3) f(1,1) =p1 and f(1,0) =1—p1.

f5) =pi- fli—1Li=1)+ 1 —pi)- fi = 1,))

Explanation: If coin ¢ flips head then the other ¢ — 1 coins must flip head
exactly 7 — 1 times. If coin 4 flips tails then the other ¢ — 1 coins must flip

head exactly j times.

(5) The size of the table is O(nk).

(6) The time to compute one value is O(1) so the total time is O(nk) = O(n?).



