Week 2: Complexity classes and reductions. C02019/2020

These notes describe the highlights of Chapter 8 of Dasgupta. The chapter
contains many examples (mainly reductions) that are not included here. It is
not compulsory to know all those examples. However, reading some of them
may be helpful to understand the techniques introduced in this chapter.

First, read Section 0.3 on running time. Most importantly, we say that an
algorithm runs in polynomial time if the running time is bounded by p(|I|)
where p() is a polynomial and |I| is the size of the input. By efficiently we
shall mean in polynomial time.

Flavors of Optimization

Problems in combinatorial optimization typically contain the following three
elements:

o A set of instances;
o For each instance, a set of candidate solutions.

o For each instance, a set of (valid) solutions. These are the candidate
solutions with a certain property that we look for.

For example, in the Traveling Salesman Problem (TSP) each instance is a
set of points with an integer distance d(i, j) between every pair of points.
Given an instance, a candidate solution is a tour going through each point
exactly once, or in other words a permutation of the points. A solution
could be a tour ‘of minimal length’ or ‘of length at most 100’. (We shall
always assume that given numbers are integer.)

Many optimization problems have this structure and for almost all natu-
ral problems it easy to check if a given candidate solution has the desired
property. For example, we can easily check wether a given TSP tour has
length at most 100 by adding up the distances on the tour. But what if the
problem is to find the 2"-th shortest tour among all possible tours? Even
if we were given such a tour, how would we verify that it does indeed have
this property? To avoid these strange problems (for which even verifying if
a solution has the property is difficult) one makes the following restriction.

The class of search problems is defined as all problems for which verifying if a
given candidate solution is indeed a valid solution can be done in polynomial
time. The class of search problems is also known as NP.

Optimization versus Search By the definition above, the problem of
finding the shortest TSP tour is not a search problem. Given an optimal
solution, how should we check that there is indeed no shorter solution?
There may not be an efficient way to do that. Our definition of search
problems appears to have the flaw that finding an optimal solution is not
in the class of search problems. However, this is just a technical formality
since we can easily model any optimization problem as a search problem.

Search version of TSP: Given an instance of TSP and a number K we need
to find a tour of length at most K if one exists.

Clearly, computing the length of a given tour is easy. Hence, this version
of the TSP does satisfy the definition of a search problem. Moreover, if we
have an algorithm that solves this search version, then we can also use that
algorithm to find an optimal solution. This works as follows. (Remember
that all distances are assumed integer.) First, we try to find a solution of
length 1. If none exists then we try to find one of length 2, and so on. The
moment that we do find a solution, it will be the shortest. Note that this
can be done more efficiently (in polynomial time) by binary search. See
Exercise 1.

Hence, every optimization problem can be modeled as a search problem.
Moreover, any algorithm for the search problem can be used, with only a
polynomial factor loss in the running time, to find an optimal solution.

Genuine search problems. Some search problems do not originate from
optimization problems. For example, finding the prime factors of an integer
number is not an optimization problem. (If the input is 70, the output
should be 2,5,7 since 2 -5 -7 = 70. If the input is 31, the output should be
31, i.e., it is a prime.) But prime factorization is a search problem by our
definition. Given a solution, e.g. 2,5, 7, we can easily check that the product
is indeed 70. Another example is the Rudrata cycle problem. In instance is
given by a graph (no distances!) and we search for a Rudrata cycle. (NB.
Rudrata is mot the search version of TSP. See the search version of TSP
above.) Another example is graph isomorphism. See Figure Given two

graphs, are they actually the same if we ignore the labelling of the vertices?
Here, we search for a bijection between the vertex sets of the two graphs. (A

Figure 1: Graph Isomorphism: Are the two graphs on the left the same?
How about the two on the right? (Answer: No, Yes)

correct bijection is shown in the rights pair). If two graphs are the same then
a bijection exists and we can check equivalence easily by checking each of the
edges. (Note that in the definition of search problems, we only require that
verifying is easy for valid solutions, in this case a correct bijection. Verifying
that two graphs are not the same may not be easy at all. In fact, it is a well-
known open problem what the complexity of verifying the non-equivalence
of two graphs is.)

Search versus decision. Every search problem has a natural decision
variant. Here, we do not search for a valid solution (a proposed solution
with a desired property) but only want to know if a solution exists. That
means, we only require a correct yes/no answer: Is there a TSP tour of length
at most 1007 Are the two graphs the same? Does a number have more than
one prime factor? If we have an algorithm for the search problem, then we
obviously do have an algorithm for the decision version as well: If we find
a desired solution then the answer is yes, and the answer is no otherwise.
Maybe less obvious is that the other direction usually holds as well, i.e., an
algorithm for the decision problem can be used to solve the search problem.
(See Exercise 2.)

Beyond search problems Some natural problems do not fit in our def-
inition of search problems by the fact that verification is hard or even im-
possible. Consider for example the tiling problem as illustrated in Figure
If an infinite covering is possible then this can be verified if the structure
repeats itself. The left triple has a solution of 9 tiles. (Solution on the
last page.) However, one can prove that there are instances that do allow

Optimization problem:

Easy. The optimal solution is a Easy: If we find a solution then YES.
solution for the search problem. Otherwise NO.
optmie | - .
Binary search over all possible Usually possible. Approach depends
values. on the problem.

Genuine search problem)
Easy: If we find a solution then YES.

Otherwise NO.

:

Usually possible. Approach depends
on the problem.

Figure 2: Three forms of optimization. Some search problems do not have
an optimization variant.

a covering of the plane but for which any covering is non-repetitive. How
would be we able to verify a solution that has no finite description? The
tiling problem is undecidable: there just does not exists an algorithm for it,
even if the algorithm was given unlimited computing power.

Another example is the halting problem: Given an algorithm and an input,
can we decide wether the algorithm will terminate or wether it will run
forever? No, we cannot. There just is no way to decide this, even if we had
unlimited computing power.

24 ") P

Figure 3: Tiling: Can we cover the whole infinite plane with copies of the
three tiles left? How about the three on the right? (Touching sides should
match and rotation is not allowed.) (Answer: Yes, No)

P versus NP

The class of all search problems is denoted by NP. Hence, these are problems
where we search for a solution and for which we can verify in polynomial
time that a given proposed solution is indeed a valid solution.

The class of all search problems that can be solved in polynomial time is
denoted P. Hence, these are the search problems for which there exists a

polynomial time algorithm that actually finds a valid solution if such a
solution exists.

By definition, P is a subset of NP. But is it a proper subset in the sense
that P # NP? It is strongly believed, buy yet unproven, that the two sets
are not the same. The TSP is in NP but no polynomial time algorithm is
known that solves it. It is strongly believed that no such algorithm exists.

Reductions

A reduction from search problem A to search problem B is a polynomial-
time algorithm f that transforms any instance I of A into an instance f(I)
of B, together with another polynomial-time algorithm h that maps any
solution S of f(I) back into a solution h(S) of I. If f(I) has no solution
then neither does I. We say that A reduces to B (notation A — B) if such
a reduction exists.

The implication of A — B is twofold:
1. Any efficient algorithm for B can be used to solve A efficiently.

2. Solving problem B is at least as difficult as solving problem A (up to
a polynomial factor in running time).

Reductions as defined above are also known as transformations: each in-
stance of A maps to exactly one instance f(I) of B and I has a solution if
and only if f(I) has a solution. In general, we say that A reduces to B if any
algorithm for B can be used to solve A while losing only a polynomial factor
in the running time. Hence, we use implication 1 above as our definition
of reducibility. Note that the first implication implies the second. Hence,
from now we shall use the first implication as our informal definition of a
reduction.

Reductions are transitive (they compose):

(A-Band B—»(C) = A—=C.

The class of NP-complete problems.

A search problem is called NP-complete if all other search problems reduce
to it.

If some search problem B is NP-complete then, by the first implication
above, any efficient algorithm for B can be used to solve every search prob-
lem! Note that the fact the we can define N P-complete problems does not
automatically mean that such search problems exist. Nevertheless, they do
and the first problem that was proven to be NP-complete (by Cook and
Levin) is the Satisfiability problem (SAT). By the definition, NP-complete

hard NP-complete

()

problems can be seen as the hardest problems among all search problems
simply because any polynomial time algorithm for any NP-complete problem
can used to solve every search problem.

A problem is called NP-hard if all search problems can be reduced to it. The
subtle difference with the definition of NP-complete is that we do not require
that the NP-hard problem itself is a search problem. (So the weird problem
of finding the 2"-th shortest tour that was mentioned earlier is formally not
an NP-complete problem. Nevertheless, it certainly is (NP)-hard!)

Using reductions

As mentioned, reductions are used in two ways.

1. If A — B then any algorithm for B can be used to solve A.

Example 1: Bipartite matching (A) can be reduced to Maximum Flow (B).
See Exercise 4 of week 1. Any algorithm for MaxFlow (like Ford Fulkerson)
can be used to find a maximum matching in a bipartite graph.

Example 2: Minimum s-t cut (A) reduces to Maximum Flow (B). Given
maximum flow, we can do a breath-first search in the residual graph to find
the set of vertices that can still be reached from the source s. This set then
defines a minimum s-t cut.

P (easy) NP-complete (hard)

Euler tour Rudrata tour

Shortest path Longest path

Chinese Postman Traveling Salesman

Linear Programming (LP) | Integer Linear Programming (ILP)
2SAT Satisfiability (SAT) and 3SAT
Minimum Spanning Tree | Vehicle Routing

Matching Load Balancing

Maximum Flow Knapsack

Minimum Cost Flow Vertex Cover

Figure 4: Although both lists are essentially infinitely long, most problems
in practice are hard. Some problems come in easy-hard pairs like Euler-
Hudrata and LP-ILP.

2. If A— B and A is NP-complete then B is NP-complete as well.
This follows from the transitivity of reductions

‘Any search problem’ — A — B

=
‘Any search problem’ — B.

Example. Cook and Levin showed by a complicated proof that SAT is NP-
complete. The 3SAT problem is a special case of SAT and reducing SAT to
3SAT is relatively easy. Hence, after SAT what proven to be NP-complete,
NP-completeness of 3SAT, and many more problems, followed shortly after.

0 |

D
X

Figure 5: Solution to the tiling instance of Figure |3| (left). This structure of
3 x 3 can be infinitely repeated.

Exercises

Exercise 0 Exercise 0.1 from Chapter 0 of Dasgupta. You are not asked
to formally prove this from the definition. Just use your intuition to tell
which is true O(), ©() or both (and see if you were correct from the answers
provided later.)

Exercise 1 Exercise 8.1 from Dasgupta. Remember that all distance are
assumed integer.

Exercise 2 Exercise 8.2 from Dasgupta.

Exercise 3 Exercise 8.10 from Dasgupta. Hint: The following problems
were mentioned as NP-complete in the chapter and they provide the answer
to subquestions (a) - (g) (in some order). See Chapter 8 for their defini-
tions. RUDRATA PATH, RUDRATA CYCLE, CLIQUE, VERTEX COVER, SAT,
INDEPENDENT SET.

Exercise 4 Exercise 8.12 from Dasgupta.

Exercise 5 Exercise 8.13 from Dasgupta.

Exercise 6 Exercise 8.16 from Dasgupta. Hint: you do not need to know
or use the definition of 3SAT to answer this question. It satisfies to know
that it is an NP-complete problem.

Exercise 7 Exercise 8.21 from Dasgupta.
An example: If x+ = ACTGACG and k = 4 then the multiset of all of its
k-mers is I'(x) = {ACTG,CTGA, TGAC, GACG}.

