
Week 2: Solutions. CO 2019/2020

Exercise 0 Exercise 0.1 from Chapter 0 of Dasgupta. You are not asked
to formally prove this from the definition. Just use your intuition to tell
which is true O(), Ω() or both (and see if you were correct from the answers
provided later.)

Solution: We make use of the following:

(i) na = O(nb) for a ≤ b. (See question (b))

(ii) na = Ω(log n)b for any a > 0 and b > 0. (See question (g))

(iii) loga n = Θ(logb n) for a, b > 1. (See question (p)).

(iv) If f(n) = O(g(n) then h(n)f(n) = O(h(n)g(n)). (See question (i))

(v) If f(n) = O(g(n)) then g(n) = Ω(f(n)) and vice versa.

(a) f(n) = n− 100 and g(n) = n− 200
f = Θ(g).

(b) f(n) = n1/2 and g(n) = n2/3

f = O(g).

(c) f(n) = 100n + log n and g(n) = n + (log n)2

f = Θ(g).

(d) f(n) = n log n and g(n) = 10n log(10n)
f = Θ(g). Note, 10n log(10n) = 10n(log n + log 10)

(e) f(n) = log(2n) and g(n) = log(3n)
f = Θ(g). Note, log(2n) = log n + log 2. and log(3n) = log n + log 3.

(f) f(n) = 10 log n and g(n) = log(n2)
f = Θ(g). Note, log(n2) = 2 log n.

(g) f(n) = n1.01 and g(n) = n log2 n
f = Ω(g). Note n1.01 = n · n0.01 and n0.01 = Ω(log2 n).

(h) f(n) = n2/ log n and g(n) = n(log n)2

f = Ω(g). Note n2 = Ω(n(log n)3). No divide both sides by log n.

1

(i) f(n) = n0.1 and g(n) = (logn)10

f = Ω(g).

(j) f(n) = (log n)logn and g(n) = n/(log n)
f = Ω(g). Note (log n)logn = Ω(2logn) = Ω(n)

(k) f(n) =
√
n and g(n) = (log n)3

f = Ω(g).

(l) f(n) = n1/2 and g(n) = 5log2 n

f = O(g). Note n1/2 ≤ n = 2log2 n

(m) f(n) = n2n and g(n) = 3n

f = O(g). Note n = O(1.5n) so n2n = O(1.5n2n) = O(3n).

(n) f(n) = 2n and g(n) = 2n+1

f = Θ(g). Note 2n+1 = 2(2n).

(o) f(n) = n! and g(n) = 2n

f = Ω(g). If n ≥ 4 then n! ≥ n · (n− 1) · · · 4 ≥ 4n−4 = 4−44n.
(So f = Ω(g) and f(n) 6= O(g(n)).)

(p) f(n) = (log n)logn and g(n) = 2(log2 n)
2

f = O(g). Note 2(log2 n)
2

= (2log2 n)log2 n = nlog2 n

(q) f(n) =
∑n

i=1 i
k and g(n) = nk+1

f = Θ(g). Clearly, f(n) < n(nk) = nk+1. For the other direction,
assume that n is even. Then,∑n

i=1 i
k >

∑n
i=n/2+1 i

k >
∑n

i=n/2+1(n/2)k = (n/2)(n/2)k = Ω(nk+1).

(To see the last step, note that k is not a variable. So, (1/2)k is a
constant.) For odd n, the notation is a bit different but the proof is
similar.

Exercise 1 Exercise 8.1 from Dasgupta. Remember that all distance are
assumed integer.

Solution: Let us first see why the easy approach is not a polynomial re-
duction. The easy approach is to try values b = 1, 2, 3, . . . until the TSP-
algorithm finds a feasible solution. The number of times we apply the TSP
algorithm is exactly the length of the shortest tour. This is not polynomial
in the input size. The input size of a number d is O(log2 d). Putting it the
other way around, the value of an integer number is exponential in its input

2

size. (To illustrate this assume that there are only 3 points and all 3 dis-
tances are 220. Then the input size is about 60 but the number of iterations
of this approach is more than 3 million.) See Dasgupta page 242 for more
on this.

The efficient (polynomial time) approach is to apply binary search. Let L be
a lower bound on the optimal value and U an upper bound. Initially, take
L = 0 and let U be an upper bound on the optimal value, in this case we
could take U =

∑
i,j d(i, j), i.e., the sum of all distances. In each iteration

we check if there is a valid solution, i.e, a tour of length at most b and then
adjust L or U . We maintain the invariant that there is valid solution of
value at most U and there is no solution of value L− 1.

def BinarySearch(L,U):

while L 6= U :

b = b(L + U)/2c
if Valid(b):

U = b

else:

L = b + 1

return U

The number of times that we check for a valid solution of value at most b is
only O(log(

∑
i,j d(i, j))) which is polynomial in the input size.

Exercise 2 Exercise 8.2 from Dasgupta.

Solution: Let G = (V,E) be the graph. Order the edges in an arbitrary
order e1, e2, . . . , em. Assume we have a function that tells if a graph G has
a Rudrata Path (RP)

If G = (V,E) has no RP then we can stop immediately. Otherwise we iterate
as follows. We try the edges one by one. If there is still a RP after deleting
an edge ei then we delete it. Otherwise we keep it.

F = E
for i = 1 . . .m:

if G = (V, F \ {ei}) has a RP then:
F = F \ {ei}

3

The final set F is a Rudrata path. To see this note that we only keep an
edge ei if G = (V, F) has a RP while G = (V, F \ {ei}) has no RP. But then
ei must be in every RP in G = (V, F). Hence, all edges in the final set F
are in every RP in G = (V, F). That means, F itself is a RP.

Exercise 3 Exercise 8.10 from Dasgupta. Hint: The following problems
were mentioned as NP-complete in the chapter and they provide the answer
to subquestions (a) - (g) (in some order). See Chapter 8 for their defini-
tions. Rudrata Path, Rudrata Cycle, Clique, Vertex Cover, SAT,
Independent Set.

(a) SUBGRAPH ISOMORPHISM is a generalization of CLIQUE.
Assume we want to find a clique of size k in a graph G = (V,E). Let
H = Kk. There is a subgraph of G that is isomorph to H if and only if
G has a clique of size k.

(b) LONGEST PATH is a generalization of RUDRATA PATH
Assume we want to find a RUDRATA PATH. There is a path of length
n − 1 if and only if there is a Rudrata path. (Note, a RP has n − 1
edges.)

(c) MAX SAT is a generalization of SAT
Assume we want to find a satisfying truth assignment for a SAT instance.
Let m be the number of clauses. There is a truth assignment that
satisfies at least m clauses if and only if there is a truth assignment that
satisfies all clauses.

(d) DENSE SUBGRAPH is a generalization of CLIQUE
Assume we want to find a clique of size k. Let a = k and b = a(a−1)/2.
There is a set of a vertices with at least b edges between them if and
only if there is a clique of size k.

(e) SPARSE SUBGRAPH is a generalization of INDEPENDENT SET
Assume we want to find an independent set of size k. Let a = k and
b = 0. There is a set of a vertices with at most b edges between them if
and only if there is an independent set of size k.

(f) SET COVER is a generalization of VERTEX COVER
Assume we want to find a vertex cover of size k in a graph G = (V,E).
Define the following Set Cover instance. Let B = E be the set of

4

elements and for each i ∈ V let Si be the set of edges that are incident
with (i.e., attached to) vertex i. There is a set cover of size k if and only
if G has a vertex cover of size k.

(g) RELIABLE NETWORK is a generalization of RUDRATA CYCLE As-
sume we want to find a Rudrata cycle in a graph G = (V,E). Define
dij = 1 for all (i, j) ∈ E and dij = 2 if (i, j) /∈ E. Let b = n and rij = 2
for all pairs of points i, j. If there is a Rudrata cycle C in G then C
satisfies conditions (1) and (2). Vice versa, if there is a set of edges C
that satsfies conditions (1) and (2) then this must be a Rudrata cycle.

Exercise 4 Exercise 8.12 from Dasgupta.

Solution: (a) To show that it is a search problem we must show that there
is a polynomial time algorithm that, given a candidate solution, verifies cor-
rectly that it is a valid solution. Given a graph we should verify that (1)
it is a spanning tree and (2) all degrees are at most k. The verify (1) it is
enough to verify that it has n − 1 edges and that it connects all vertices.
The latter can be done by breath- or depth-first search. To verify (2) we
only need to check for each vertex that it has at most k neighbors. Clearly,
this can be done in polynomial time.

(b) The k-SPANNING TREE is a generalization of RUDRATA PATH. As-
sume we want to find a RUDRATA PATH. Let k = 2. There is spanning
tree in which each note has a degree of at most 2 if and only of there is a
Rudrata path.

Exercise 5 Exercise 8.13 from Dasgupta.

Solution:

(a) In P.
Assume that there exists a spanning tree T such that its set of leaves
includes L. If we delete the vertices L from the tree then it remains
connected. Hence, if we delete L and all its incident edges from G
then the graph remains connected. Now the following algorithm finds
a spanning tree T such that its set of leaves includes L if such a tree
exists.
(1) Delete L and all its incident edges from G. Let this be G′.
(2) Find a spanning tree T ′ in G′.
(3) For each vertex v in L, add an edge that connects v to T ′.

5

(b) NP-complete.
This problem is a generalization of RUDRATA (s, t)-PATH. Assume we
want to find a Rudrata path from s ∈ V to t ∈ V . Let L = {s, t}. Then
there is a spanning tree with set of leaves exactly L if and only if there
is a Rudrata path from s to t.

(c) NP-complete.
This problem is a generalization of RUDRATA (s, t)-PATH. Assume we
want to find a Rudrata path from s ∈ V to t ∈ V . Let L = {s, t}. Then
there is a spanning tree with set of leaves included in L if and only if
there is a Rudrata path from s to t.
(Note that we could use here the same reduction as in (b) since each
tree has at least two leaves: If the set of leaves is included in L = {s, t}
it must be exactly L.)

(d) NP-complete.
This problem is a generalization of RUDRATA PATH. Assume we want
to find a Rudrata path. Let k = 2. Then there is a spanning tree with
at most k leaves if and only if there is a Rudrata path.

(e) NP-complete. (This exercise turns out to be much more complictaed
than the other exercises. Skip this one if you like.)
This problem is a generalization of 3D-MATCHING. Assume we are
given an instance of 3D-matching in the form of a set W of m elements
and a set V of triples of W . An example is given in Figure 1. Without
loss of generality, each element of W appears in at least one triple (since
otherwise no 3DM exists.) Now construct the following bipartite graph.
We define a vertex for each element in W and V . (For simplicity we
denote the vertex sets also by V and W .) There is an edge (v, w) between
v ∈ V and w ∈ W if w is in triple v. Further, there is an edge between
any two vertices of V . Let k = n + m−m/3 = n + 2m/3.
If there is 3DM S ⊂ V then construct the following tree. Connect the
vertices S by a path and connect all other vertices directly to S. The
number of leaves is exactly n + m− |S| = k.
Now assume there is a spanning tree with k leaves. Each vertex in V
is neighbor of at most 3 vertices in W . If x is the number of leaves
in W then there are at most n − x/3 leaves in V . So we must have
n+ 2x/3 ≥ k = n+ 2m/3 which implies x ≥ m. But also x ≤ |W | = m.
So x = m. All vertices in W must be leaves and the m/3 non-leaves in
V define a 3DM.

6

Conclusion: There is a 3DM if and only if there is a tree with (at least)
k = n + 2m/3 leaves.

Figure 1: Illustrating the reduction for (e). There is a 3DM and a corre-
sponding tree with k = n + 2m/3 = 11 leaves is shown in red.

(f) NP-complete.
This problem is a generalization of RUDRATA PATH. Assume we want
to find a Rudrata path. Let k = 2. Then there is a spanning tree with
exactly k leaves if and only if there is a Rudrata path.

Exercise 6 Exercise 8.16 from Dasgupta. Hint: you do not need to know
or use the definition of 3SAT to answer this question. It satisfies to know
that it is an NP-complete problem.

Solution: First we show that: EXPERIMENTAL CUISINE is a generaliza-
tion of INDEPENDENT SET.
Assume we want to find an independent set of size at least k in a graph
G = (V,E). Then construct the following instance of the EXPERIMEN-
TAL CUISINE problem with n = |V | ingredients. Take penalty p = 0 and
let the discord between ingredient i and j be 1 if (i, j) ∈ E and let it be zero
otherwise. We can choose k ingredients with total penalty p = 0 if and only
if there is an independent set of size k.

From the above: If EXPERIMENTAL CUISINE is solvable in polynomial
time then INDEPENDENT SET is solvable in polynomial time. We know
that INDEPENDENT SET is NP-complete. So if INDEPENDENT SET is
solvable in polynomial time then every problem in NP is solvable in polyno-
mial time, including 3SAT.

Exercise 7 Exercise 8.21 from Dasgupta.

Solution: (a) The reconstruction problem reduces to DIRECTED RUDRATA
PATH. The hint gives the reduction. Assume that for a given multi set Γ(x)

7

of k-mers we want to reconstruct a corresponding string x. Construct a
directed graph with one node for each k-mer, and with an edge from a to b
if the last k − 1 characters of a match the first k − 1 characters of b.

Figure 2: Example illustrating the reduction (a). Given a multi set of k-
mers (left, k = 3) we construct a directed graph as described. Any directed
Rudrata path in the graph corresponds with a reconstruction of the multi
set and vice versa.

(b) The reconstruction problem reduces to DIRECTED EULER PATH.
Assume that for a given multi set Γ(x) of k-mers we want to reconstruct a
corresponding string x. Construct the following digraph. For each substring
of k− 1 characters that appears in Γ(x) we define a vertex. For each k-mer
there is an arc from a vertex a to a vertex b where a is the vertex that
corresponds with the first k − 1 characters of the k-mer and b corresponds
with the last k − 1 characters.

Figure 3: Example illustrating the reduction (b). Given a multi set of k-
mers (left, k = 3) we construct a directed graph as described. Any directed
Euler path in the graph corresponds with a reconstruction of the multi set
and vice versa.

8

