Combinatorial Optimization 2019,/2020

Week 1: Graph theory and network flows.

1 Basics of Graph Theory

Part of these notes are a translation of excerpts from Chapter 1 of the Dutch
lecture notes Grafen: Kleuren en Routeren by Alexander Schrijver
http://homepages.cwi.nl/~lex/files/graphsl_3.pdf

Below, the numbering of the Exercises corresponds to the numbering in
Schrijver’s lecture notes.

A graph G is defined by a pair (V, E) where V is a finite set of points and E
is a set of pairs of two (distinct) points. A graph is drawn by depicting the
points in V' as (thick) dots and the pairs in F as lines between two points.
The points defining a graph are called vertices and the lines are called edges.
The number of vertices is usually denoted by |V| = n and the number of
edges by |FE| = m. A graph is called simple is there is at most one edge
between every pair of points.

In general, we denote by |X| the number of elements in a set X. For two
sets X1 and X we denote by X; \ X2 all elements that are in X; but not
in Xs.

If for two vertices u,v € V we have the edge e = {u,v} € E then we say
that v and v are adjacent. We also say that u and v are incident to e and,
conversely, that e is incident to u and v. Two edges that share a vertex are
also said to be adjacent.

The number of edges incident to vertex v € V is called the degree of v. No-
tation: d(v). A graph is called regular if all vertices have the same degree.
A graph is called k-regular if all vertices have degree k.

Exercise 1.7. How many 2-regular graphs exist with V' ={1,2,3,4,5}?

http://homepages.cwi.nl/~lex/files/graphs1_3.pdf

Exercise 1.8. How many 3-regular graphs exist with V' ={1,2,3,4,5}7

Exercise 1.11. How many edges has a 5-regular graph on 16 vertices?

Exercise 1.12. How many edges has a k-regular graph on n vertices?

Exercise 1.16. Prove that every graph has an even number of points with
odd degree.

Exercise 1.19. Prove that a graph G = (V| E) with |[V| =n and |E| =m
has a vertex with degree < 2m/n and a vertex with degree > 2m/n.

Exercise 1.21. Prove that every graph G = (V, E) with |V| > 2 has two
vertices of the same degree.

A graph G = (V, E) is complete if each pair of points is adjacent (defines an
edge). A complete graph on n points is denoted by K.

A graph G is bipartite if V' can be split into two sets Vi and V5 such that for
each edge e = {u,v} € E, we have [eNVy| = |eN V| = 1. A complete bipar-
tite graph with V' = V; UV, has edge set E = {{v1,v2} | v1 € V4, vy € Vi }.
The complete bipartite graph with |Vi| = m and |V2| = n is denoted by
Ko,

Exercise 1.26. For which values of m and n is K, , regular?

A walk in a graph G = (V, E) is a sequence of vertices (vg,v1,...,vg) such
that for all i =1,...,k, {v;—1,v;} € E. Tt is called a walk is from vy to vg.
We say that this walk has (combinatorial) length k. If all vertices on the
walk are distinct we call it a path.

Exercise 1.41. How many paths are there from vertex 1 to vertex 3 in K3?

Exercise 1.42. How many paths are there from vertex 1 to vertex n in K,?

Exercise 1.44. Prove that that a graph of which each vertex has degree at
least k, has a path of length k.

A graph is called connected if there is a path between any two of its vertices.

Exercise 1.47. Prove that every connected graph on n vertices contains at
least n — 1 edges.

Exercise 1.48. Does there exist a non-connected graph on 6 vertices con-
taining 11 edges?

Exercise 1.50. Prove that every non-connected graph on n vertices con-
tains at most 3(n — 1)(n — 2) edges.

A graph G’ = (V' E’) is called a subgraph of G = (V, E) if V! C V and
E' C E. A component of G = (V, E) is a maximal connected subgraph
G’ = (V' E'). That means, it is a connected subgraph and there is no other
connected subgraph G” = (V" E") with V! C V" and E' C E".

Hence, a graph G is connected if and only if it consists of exactly one com-
ponent.

Exercise 1.59. Prove (from the definition above) that if Gy = (V1, 1) and
Go = (Va, F3) are two distinct components of G then V3 N Vs = (.

Exercise 1.63. Prove that a graph G = (V, E) with each vertex having
degree at least 1(n — 1) is connected.

Exercise 1.64. Prove that a graph G = (V, E) has at least |V| — | E| com-
ponents.

Exercise 1.65. Prove that a graph with exactly two vertices with odd de-
gree must contain a path between these two vertices.

A walk (vg,v1,...,vg) is called a closed walk or a cycle if vg = vg. A cycle
with all vertices distinct is called a circuit. A circuit of length 3 is called a
triangle.

Exercise 1.67. Let G be a graph for which every vertex has a degree of at
least 2. Prove that G contains a circuit.

G = (V,E) is called a forest if G does not contain any circuit. A connected
forest is called a tree.

Exercise 1.75. Prove that between any pair of vertices in a tree there is
exactly one path.

A vertex of degree 1 in a tree is called a leaf of the tree.

Exercise 1.76. Prove that every tree with at least two vertices contains a
leaf (cf. Exercise 1.67).

Exercise 1.77. Derive from the previous exercise that every tree on n ver-
tices has exactly n — 1 edges.

Exercise 1.79. Prove that a forest on n vertices consisting of &k components
contains exactly n — k edges.

Exercise 1.80. Prove that every tree with at least two vertices contains at
least two leaves.

An Euler cycle in a graph G = (V, E) is a cycle C = (vg,v1,...,vx) (re-
member that vy = wvi), with the property that every edge e € FE is tra-
versed exactly once; i.e., for each edge e € FE there exists exactly one

i €{1,...,k} such that e = {v;_1,v;}. A graph is called an Euler graph if
it contains an Euler cycle. An Euler path in a graph G = (V, E) is a path
C = (vo,v1,...,v) with the property that every edge e € E is traversed
exactly once, but it is not required that vg = vy.

Theorem 1.1 (Euler’s Theorem). A graph G = (V, E) is an Euler graph
if and only if G is connected and each of its vertices has even degree.

Exercise 1.86 Let G be an Euler graph with an even number of edges. Let
di,ds, ..., d, be the degrees of the points. Show that there exists a subgraph
with degrees di/2,d2/2,...,dy,/2.

Exercise 1.88. Let GG be a connected graph with exactly two points of odd
degree. Use Euler’s Theorem to prove that G contains a walk that traverses
each edge exactly once.

A circuit C of G is called a Hamilton circuit (or Hamilton cycle) if each
vertex of G appears on C. A graph G is called a Hamilton graph if it
contains a Hamilton circuit. Hamiltonian cycles / graphs are also called
Rudrata cycles / graphs (after a 9th century Indian mathematician)

Exercise 1.90 Let n be an odd number. Show that on an n x n chess board,
it is not possible for a knight (horse) to move over the board, hitting each
square exactly once, while starting and ending in the same square.

Exercise 1.91. Show that for each n there exists a graph on n vertices
such that each vertex has degree at least %n — 1 and such that it is not a
Hamilton graph.

A matching M is a subset of the edges (M C FE) such that no the edges
in M have an end point in common. The size of the matching M is the
number of edges in it: |M|. A maximum macthing in a graph is a matching
of maximum size. A perfect matching is a matching for which each vertex
is the end point of some edge in the matching, i.e., 2|M| = |V]. Clearly, a
graph with an odd number of vertices can not have a perfect matching.

Exercise X.1 Give an example of a connected graph with an even number
of vertices that does not have a perfect matching.

A directed graph G is defined by a pair (V, A) where V is a finite set of
points and A is an ordered set of pairs (arcs) of two (distinct) points. For
arc (u,v) we call u the tail and v the head of the arc. We use the following
notation for directed graphs:

0~ (v): the set of arcs with head v (the arcs towards v)

5% (v): the set of arcs with tail v (the arcs leaving v)

d~(v): the number of arcs with head v (so d™(v) = |6~ (v)])
d™ (v): the number of arcs with tail v (so d™(v) = |67 (v)|)

2 Network flow algorithms

2.1 Flows

The networks we consider consists of a directed graph G = (V, A), two
special nodes s,t € V which are, respectively, a source and sink of GG, and
capacities ¢, > 0 on each arc a € A. (Notation: we also write ¢, for

a = (u,v).)

A flow f consists of a number f, > 0 for each a € A such that

1. the capacity constraints are met: 0 < f, < ¢, for each a € A,

2. flow conservation is met, that means, the amount of flow leaving a
point u (other than the source or sink) is equal to the amount of flow
entering u:

Z Juw = Z Jou fOI'aHUGV\{&t}.

(u,v)€A (v,u)eA

The value of the flow is the nett flow that leaves s:

Z fsv_ Z fvs-

(s,v)eA (v,5)€A

To simplify notation, we define from now on fy, = 0 if (u,v) ¢ A. Then we
can write the value of the flow as

Z(fsv - fvs)-

veV

2.2 Cuts

For a set U C V define
07 (U): the set of arcs with head in U and tail in V' \ U (arcs towards U)
51 (U): the set of arcs with tail in U and head in V' \ U (arcs leaving U)

IfU CV withse€ U and t € V\U then 67(U) is called an s-t cut. We call
this the cut defined by U. The next theorem says that the value of the flow
is equal to the nett flow across any s-t cut.

Theorem 1 Let f be a flow and §(U) an s-t cut then

value(f Z fa— Z fa-

a€dt(U) acd—(U)

Equivalently, when we define fu, = 0 if (u,v) ¢ A, then we can write this

theorem as
value(f) = Z Z fuv - fvu-

uelU veV\U

Proof: By flow conservation we have that for any u € U with u # s

quv_fvu =0.

veV

Zz,fuv_fvu:oa

uelU velU

Also,

since each arc (u,v) with u,v € U appears once positive and once negative
in the summation. Using both these equation we get

value(f) Z fsv*fvs Zquv*fvu— Z Z fuvffvu

veV uclU veV uelU veV\U

The capacity of a cut 67(U) is the total capacity of the arcs in the cut:

cap(6T(U)) = Z Co = Z Cuv

aedt(U) (u,v)€A:
weUpeV\U

To simplify notation we write cap(6*(U)) as cap(U) and define ¢y, = 0 if
(u,v) ¢ A. Then we can write the capacity of the cut defined by U as

cap(U) = Z Z Cuv- (1)

uelU veV\U

Theorem 2 For any s-t flow f and s-t cut 6T (U):

value(f) < cap(U).

Proof: By Theorem

Value(f) = Z Z fuv _fvu < Z Z fuv < Z Z Cyv = cap(U).

uelU veV\U uelU veV\U uelU veV\U

The theorm implies that the maximum value of a flow is no more than the
minimum capacity of a cut. In fact, equality holds and the proof follows
from the algorithm to find a maximum flow.

2.3 MaxFlow: The Ford-Fulkerson (FF) algorithm

The algorithm starts with zero flow: f. = 0 for all e € A. Then, it repeatedly
chooses an appropriate path from s to ¢ and increases the flow along the arcs
of this path as much as possible.

It is important to note that it may be necessary to reduce flow along an arc
in order to increase the flow over the path. In the example below, the first
number is the flow and the second number is the capacity. The maximum
flow is 2. However, the initial flow f; of value 1 as shown in the figure cannot
be extended without reducing the flow on the arc in the middle.

Figure 1: The initial flow f; has value 1.

Given a flow f, the residual graph (or residual network) gives for any arc
the amount by which the current flow on the arc can be altered. For any arc
(u,v) € A, there is an arc (u, v) in the residual graph if there is still capacity
left: fuy < cup- But also, there is a reversed arc (v, u) in the residual graph
if fuu > 0. The residual graph for our example is as follows. The numbers
show the amount by which the current flow can be extended, or, if the arc is
reversed, the amount by which the current flow can be reduced. The graph
has an st-path, namely s,1,4,3,2,t. The minimum capacity on the path
is 1. So we add 1 over this path. The new flow has value 2 which is the
maximum. A more complex example of the FF algorithm is given in the
slides.

Figure 2: The residual network for f;.

Figure 3: Flow f5 of value 2 is optimal.

Theorem 3 If all capacities are integer then the FF algorithm terminates
and the flow f, is integer for each arc a € A.

Proof: The flow is increased by an integer value in each iteration, so the
number of iterations is no more than, for example,), cg,, which is an upper
bound on the flow that can leave s. Also, since the increase is integer in
each iteration, the final flow is integer on each arc.

Proof of optimality Consider the residual graph when the FF-algorithm
terminates. Let U be the set of point that can be reached from s by a
directed path. Clearly, s € U and t ¢ U since otherwise there would be a

flow augmenting path. So U defines an s-t cut. Since there is no arc from
U to V \ U we have that:

o for any arc (u,v) € A with u € U and v € V \ U we have fy, = cuy,

o for any arc (v,u) € A with w € U and v € V' \ U we have f,, = 0.

Now, by Theorem

value(f) = Z Z fuv - fvu = Z Z Cyv = Cap(U)'

uelU veV\U uelU veV\U

10

So the FF-algorithm returns a flow with value equal to the capacity of cut
U. Let MaxFlow denote the maximum flow value and MinCut denote the
smallest capacity of an s,-t cut. Then,

MaxFlow > value(f) = cap(U) > MinCut.
On the other hand, Theorem [2] states that
MaxFlow < MinCut.
Combining both we get the following theorem
Theorem 4 (MaxFlow=MinCut) The mazimum value of an s-t flow is

equal to the minimum capacity of s-t cut and FF-algorithm returns both a
mazimum flow and a minimum cut.

Running time The number of iterations of the FF algorithm may be as
large as the value of the flow. If the algorithm always chooses the arc in the

middle on the path then the flow is extended by 1 in each iteration and it
will take 2000 iterations to find the maximum flow. Clearly, two iterations
would be enough here. With a small adjustment to the algorithm, we can
guarantee that the running time only depends on the size of the network
and not on the capacities as in the example above.

2.4 MaxFlow: Edmonds-Karp-Dinitz (EKD) algorithm

The algorithm applies the FF algorithm but in each iteartion it chooses the
s-t path in the residual graph with the minimum number of arcs.

Theorem 5 The number of iterations of the EKD algorithm is O(nm)
Proof: See slides.

11

2.5 Mincost flow

In the minimum cost flow problem we are given a network G = (V, A) with
s,t € V and a capacity ¢, for any arcs a and, in addition, a cost that we
denote by cost,. The cost of a flow f is

Z costy faq.

acA

By this definition, the minimum cost (zero) is attained by sending no flow.
In the minimum cost flow problem we want to find, for a given flow value
v, a flow of minimum cost among the flows of value v.

A mincost flow can be computed as follows. First, find any flow f of value
v, which can be computed by, for example, the FF algorithm. Next, make
the residual network as in FF but now for each reversed arc also make the
cost negative. (Note that sending a flow over a reversed arc in the residual
corresponds with reducing the flow.) Let C be a cycle in the residual graph.
If we augment f by sending flow over C' then the value of the flow remains
v. However the cost may change: If the sum of the cost of the arcs in C is
negative then the cost of the flow will decrease.

Mincost flow algorithm: (The cycle cancelling algorithm)

o Step 1: Find a feasible flow of value v. Make the residual graph.
o Step 2: While there is a negative-cost cycle C' in the residual graph:

— add the largest possible flow over C,
— update the residual graph.

Theorem 6 The mincost flow algorithm returns a minimum cost flow.

Proof:(Only a sketch) Let f be the flow returned by the algorithm. Assume
that f’ is a cheaper flow of value v. We shall prove that this is not possible.
Define f’ — f as the flow that sends f], — fuu from u to v for each pair u,v.
Note that f'— f is a feasible flow in the residual graph since f+(f' —f) = f’
is a feasible flow in the original network G. The value of f' — f is v —v = 0.
A flow of value zero is called a circulation. By assumption, the cost of f'— f
is strictly less than zero. Any circulation is the sum of flows over cycles.

12

Since the cost is strictly less than zero, at least one of these cycles, say C,
must have a negative cost. Since, f' — f is feasible in the residual, cycle C'
is feasible in the residual. However, by definition of the algorithm, there are
no negative cost cycles in the residual.

3 Flow exercises

Exercise 1 Show that for any flow, the total (nett) flow leaving s is equal
to the total (nett) flow entering ¢:

Z(fsv - fvs) = Z(fvt - ftv)'

veV veV

Exercise 2 Consider the following problem: There are p families going out
for dinner and together they use ¢ tables. No two members of a family
should sit at the same table. Let a; be the number of people in family ¢
(¢ =1,2,...,p) and table j has place for b; persons (j = 1,...,q). Formulate
this problem as a maximum flow problem. (Make a sketch of the network
including the capacities on the arcs.)

Exercise 3 In this exercise we will see the relation between the maxflow-
mincut theorem and LP-duality.

Consider a network G = (V, A) with source s and sink ¢. The arcs are
labeled 1,2,...,m (JA] =m). Let ¢; be the capacity of arc j. Let p be the
number of directed s-t paths and label these paths 1,2,...,p. Let ¢;; = 1 if
arc ¢ is on path j and let ¢;; = 0 otherwise. Then the next LP is an exact
formulation of the maximum flow problem.

max y ;I
st. P L qijri<cj, forallj=1,....m (2)
z; 20 foralle=1,...,p.
(a) Give the corresponding LP-formulation for the network below.

(b) Give a maximum flow and its corresponding LP-solution.

(c) Give the dual of this LP.

13

(d) Find a solution to the dual with value equal to the primal solution found
in (b).

(e) Give an interpretation of this dual solution in terms of the network.

Figure 4: The labels in squares give the numbers of the arcs.

Exercise 4 Explain how you can find a maximum matching in a bipartite
graph by using a maxflow algorithm. That means, formulate the matching
problem as a flow problem and explain how you can deduce the maximum
matching from the maximum flow.

Exercise 5 In the network below, each first number is the arc’s capacity
and the second number is its cost per unit flow. Find a minimum cost flow
of value 3 by following the steps of the cycle cancelling algorithm. Start
with a flow of value 3 over the path s, a,t.

a

Exercise 6 Consider a flow network with integer capacities. Prove or dis-
prove the following statements.

14

(a) If all capacities are even, then there is maximum flow in which f, is even
for all a € A.
(b) If all capacities are odd, then there is maximum flow in which f, is odd
for all a € A.

Exercise 7 (a) An arc a in the flow network is called upwards critical if
increasing the capacity of a increases the value of the maximum flow. Does
every network possess an upwards critical arc?

(b) An arc a in the flow network is called downwards critical if decreasing
the capacity of a decreases the value of the maximum flow. Does every
network possess a downwards critical arc?

15

	Basics of Graph Theory
	Network flow algorithms
	Flows
	Cuts
	MaxFlow: The Ford-Fulkerson (FF) algorithm
	MaxFlow: Edmonds-Karp-Dinitz (EKD) algorithm
	Mincost flow

	Flow exercises

