
Week 1: Solutions. CO 2019/2020

Basics of Graph Theory

Exercise 1.7. How many 2-regular graphs exist with V = {1, 2, 3, 4, 5}?
Solution: One graph: A cycle on all the 5 points (usually denoted by C5).

Exercise 1.8. How many 3-regular graphs exist with V = {1, 2, 3, 4, 5}?
Solution: None. For a proof see Exercise 1.16.

Exercise 1.11. How many edges has a 5-regular graph on 16 vertices?

Solution: 5 · 16/2 = 40.

Exercise 1.12. How many edges has a k-regular graph on n vertices?

Solution: kn/2.

Exercise 1.16. Prove that every graph has an even number of points with
odd degree.

Solution: When we take the sum over all vertex degrees then each edge is
counted twice: ∑

v∈V
d(v) = 2|E|

Hence, the sum of the degrees is even. Hence, there must be an even number
of odd degree vertices.

Exercise 1.19. Prove that a graph G = (V,E) with |V | = n and |E| = m
has a vertex with degree ≤ 2m/n and a vertex with degree ≥ 2m/n.

Solution: From Exercise 1.16 it follows that the average degree is exactly
2m/n. Hence, there must be a vertex with degree ≤ 2m/n and a vertex
with degree ≥ 2m/n.

Exercise 1.21. Prove that every graph G = (V,E) with |V | ≥ 2 has two
vertices of the same degree.

Solution: For any vertex v we have d(v) ∈ {0, 1, . . . , n− 1}. Further, there
cannot be two vertices u, v with d(u) = 0 and d(v) = n − 1. So, there are
at most n − 1 different degrees. Since we have more vertices than different
degrees, there must be at least two vertices that have the same degree.
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Exercise 1.26. For which values of m and n is Km,n regular?

Solution: Only regular if m = n.

Exercise 1.41. How many paths are there from vertex 1 to vertex 3 in K3?

Solution: Two paths: (1, 3) and (1, 2, 3).

Exercise 1.42. How many paths are there from vertex 1 to vertex n in
Kn?

Solution:

Number of paths of length 1: 1
Number of paths of length 2: n− 2
Number of paths of length 3: (n− 2)(n− 3)

...
...

Number of paths of length i: (n− 2)(n− 3) · · · (n− i)
...

...
Number of paths of length n-1: (n− 2)(n− 3) · · · 1

Exercise 1.44. Prove that that a graph of which each vertex has degree at
least k, has a path of length k.

Solution: Start in any vertex, say v0, and construct a path as follows. If
the path so far is v0, v1, . . . , vi with i ≤ k − 1 then let vi+1 be a neighbor of
vi that is not in {v0, v1, . . . , vi−1}. This is possible since d(vi) ≥ k ≥ i + 1.
Hence, as long as the length of the path is less than k, we can extend it.
This results in a path of length at least k.

Exercise 1.47. Prove that every connected graph on n vertices contains at
least n− 1 edges.

Solution: We prove this by induction on n. The statement is true for n = 1.
Now assume it holds for all n′ < n. If all degrees are at least 2, then
the number of edges is at least 2n/2 = n (Count as in ex. 1.16). If not
all degrees are at least 2 then there is a vertex v of degree 1 (zero is not
possible since the graph is connected). Remove v and its adjacent edge form
the graph. The remaining graph is connected and has n−1 < n vertices. So
by induction, it has at least (n− 1)− 1 = n− 2 edges. Hence, the original
graph has at least n− 1 edges.

Exercise 1.48. Does there exist a non-connected graph on 6 vertices con-
taining 11 edges?
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Solution: No. For a proof, see the next exercise.

Exercise 1.50. Prove that every non-connected graph on n vertices con-
tains at most 1

2(n− 1)(n− 2) edges.

Solution: Let G be non-connected. Then we can partition the vertex set V
in two sets, say S and V \ S, such that there are no edges between S and
V \ S. Let |S| = k. Then, |V \ S| = n− k. The number of missing edges is
at least k(n− k). The number is minimal for k = 1 and k = n− 1. Hence,
the number of missing edges is at least n − 1. The number of edges is at
most n(n− 1)/2− (n− 1) = (n− 1)(n− 2)/2.

Exercise 1.59. Prove (from the definition) that if G1 = (V1, E1) and
G2 = (V2, E2) are two distinct components of G then V1 ∩ V2 = ∅.
Solution: Assume V1 ∩ V2 6= ∅. Then the graph G′′ = (V1 ∪ V2, E1 ∪ E2) is
connected and both G1 and G2 are subgraphs of G′′. Since G1 and G2 are
different, at least one of these two graphs is not the same as G′′. But then
that graph is not a component by the given definition.

Exercise 1.63. Prove that a graph G = (V,E) with each vertex having
degree at least 1

2(n− 1) is connected.

Solution: Assume it is not connected. Then it has a component with at most
n/2 vertices. Each vertex in that component has degree at most n/2− 1 <
(n− 1)/2. A contradiction. Hence, it must be connected.

Exercise 1.64. Prove that a graph G = (V,E) has at least |V | − |E|
components.

Solution: Let k be the number of components and let ni be the number of
vertices in component i, (i = 1, . . . , k). Component i has at least ni − 1
edges (see exercise 1.47). Hence,

|E| ≥
k∑

i=1

(ni − 1) =
k∑

i=1

ni − k = |V | − k ⇒ k ≥ |V | − |E|.

Exercise 1.65. Prove that a graph with exactly two vertices with odd
degree must contain a path between these two vertices.

Solution: Let u and v be the vertices of odd degree. Assume there is no
path between u and v. Then u and v are in different components. Each of
those components has exactly one vertex of odd degree. This is not possible
(by exercise 1.16).
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Exercise 1.67. Let G be a graph for which every vertex has a degree of at
least 2. Prove that G contains a circuit.

Solution: Make a walk v1, v2, . . . in the graph such that for any i ≥ 2,
vi+1 6= vi−1. Since the graph has only a finite number of points we must
have that vi = vj for some pair i < j. For the first moment that this
happens, the cycle vi, vi+1, . . . , vj is a circuit.
(Note that the restriction vi+1 6= vi−1 is necessary since, for example, a walk
in a tree does not lead to a circuit.)

Exercise 1.75. Prove that between any pair of vertices in a tree there is
exactly one path.

Solution: If there are two paths then there must be a circuit. However, a
tree has no circuits.

Exercise 1.76. Prove that every tree with at least two vertices contains a
leaf (cf. Exercise 1.67).

Solution: If it has no leaf then every vertex has degree at least 2. By Exercise
1.67, it has a circuit. However, a tree has no circuit.

Exercise 1.77. Derive from the previous exercise that every tree on n
vertices has exactly n− 1 edges.

Solution: We prove it by induction on n. It is true for n = 1. Now consider
a tree T on n ≥ 2 leaves and assume that the statement holds for all n′ ≤ n.
By the previous exercise T must have a leaf v. Deleting v and its adjacent
edge from the tree gives a tree on n−1 vertices. By induction, it has exactly
n− 2 edges. Hence, T has n− 1 edges.

Exercise 1.79. Prove that a forest on n vertices consisting of k components
contains exactly n− k edges.

Solution: Let ni be the number of vertices in component i (i = 1, . . . , k).
By Exercise 1.78, component i has ni − 1 edges.

|E| =
k∑

i=1

(ni − 1) = n− k.

Exercise 1.80. Prove that every tree with at least two vertices contains at
least two leaves.

Solution: Let v1, v2, . . . , vk be a longest path in the tree. If d(v1) ≥ 2 then
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v1 has a neighbor that is not on the path. But then we can extend the path.
So the degree of v1 is one. Similarly, we must have d(vk) = 1.

Exercise 1.86 Let G be an Euler graph with an even number of edges. Let
d1, d2, . . . , dn be the degrees of the points. Show that there exists a subgraph
with degrees d1/2, d2/2, . . . , dn/2.

Solution: An Euler graph has an Euler tour. Color the edges with alternate
colors. Remove all edges of one of the two colors. The remaining subgraph
has the given property.

Exercise 1.88. Let G be a connected graph with exactly two points of odd
degree. Use Euler’s Theorem to prove that G contains a walk that traverses
each edge exactly once.

Solution: Let u and v have odd degree. Adding the edge {u, v} makes the
graph Eulerian. By Euler’s theorem it has an Euler tour. Deleting {u, v}
from the tour gives a path that traverses each edge of graph G exactly once.

Exercise 1.90 Let n be an odd number. Show that on an n×n chess board,
it is not possible for a knight (horse) to move over the board, hitting each
square exactly once, while starting and ending in the same square.

Solution: A knight moves from white to black and vice versa. Since n is
odd, the number of squares, n2, is odd. If it starts on black, then it is on
white after n2 moves. But then it cannot be back at its starting point.

Exercise 1.91. Show that for each n there exists a graph on n vertices
such that each vertex has degree at least 1

2n − 1 and such that it is not a
Hamilton graph.
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Solution: If n is even then take two complete components on n/2 vertices.
If n is odd then take two complete graphs on (n − 1)/2 vertices and add a
vertex v and connect it to all other vertices.

Exercise X.1 Give an example of a connected graph with an even number
of vertices that does not have a perfect matching.

Solution:
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Flow exercises. Solutions.

Solution 1:
This is a special case of Theorem 1. By definition value(f) is the total (nett)
flow leaving s:

value(f) =
∑
v∈V

(fsv − fvs).

On the other hand, applying Theorem 1 with U = V \ {t} gives.

value(f) =
∑
u∈U

∑
v∈V \U

(fuv − fvu) =
∑

u∈V \{t}

(fut − ftu) =
∑
u∈V

(fut − ftu).

(The last equality holds since ftt = 0. )

Solution 2:
Make the following network. Take vertices v1, v2, . . . , vp where vi corre-
sponds with family i. For each table j, take a vertex wj . Further add points
s and t. There is an arc (s, vi) with capacity ai for each i ∈ {1, . . . , p}. There
is an arc (wj , t) with capacity bj for each j ∈ {1, . . . , q}. For each pair i, j,
there is an arc (vi, wj) with capacity 1.

An upper bound on the maximum flow vale is
∑

i ai since that is the max-
imum flow that can leave s. If there exists a flow of value

∑
i ai then this

immediately give a solution to the dinner problem since, by Theorem 3, the
flow on each arc (vi, wj) is either 0 or 1. If the flow value on (vi, wj) is one
then a person from family i is seated at table j.

Solution 3:
(a) The network has four s-t paths that we label as shown.
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max x1 + x2 + x3 + x4
s.t. x1 ≤ 2 (edge 1)

x2 ≤ 4 (edge 2)
x3 + x4 ≤ 5 (edge 3)

x1 ≤ 6 (edge 4)
x3 ≤ 1 (edge 5)

x4 ≤ 2 (edge 6)
x1 ≤ 4 (edge 7)

x2 + x3 ≤ 3 (edge 8)
x4 ≤ 3 (edge 9)

(b) The maximum flow value is 7. A max flow is f1 = 2, f2 = 3, f3 = 2, f4 =
2, f5 = 0, f6 = 2, f7 = 2, f8 = 3, f9 = 2.

Figure 1: The first value of each pair of numbers is the flow and the second
the capacity of the arc. The value xi is the flow on path i.

(c)

min 2y1 + 4y2 + 5y3 + 6y4 + y5 + 2y6 + 4y7 + 3y8 + 3y9
s.t. y1 + y4 + y7 ≥ 1 (path 1)

y2 + y8 ≥ 1 (path 2)
y3 + y5 + y8 ≥ 1 (path 3)
y3 + y6 + y9 ≥ 1 (path 4)

(d) y1 = 1, y6 = 1, y8 = 1, and y2 = y3 = y4 = y5 = y7 = y9 = 0.

(e) The optimal dual solution corresponds with a minimum cut: The edges
in the cut have value yi = 1.
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Solution 4:

Solution 5:

Figure 2: Left: Flow f1 of cost 24. Right: Residual(f1). It has a negative
cost cycle, (s, b, t, a, s), of cost 2+3−4−4 = −3 and the minimum capacity
on the cycle in the residual is 2.
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Figure 3: Left: Flow f2 of cost 18. Right: Residual(f2). It has a negative
cost cycle, (s, c, b, t, a, s), of cost 2 + 1 + 3 − 4 − 4 = −2 and the minimum
capacity on the cycle in the residual is 1.

Figure 4: Left: Flow f3 of cost 16. Right: Residual(f3). It has no negative
cost cycle. Hence f3 is a minimum cost flow.

Solution 6:
(a) True. Divide all capacities by 2. Theorem 3 says that there is an optimal
flow with integer flow values fa on each arc. Now multiply all fa by two.
(b) Not true. This is a counter example.

Solution 7:
(a) No. Take for example a path (s, v, t) with capacity 1 on each of the two
arcs.
(b) Yes. If we decrease the capacity of any arc a in the minimum cut then
the capacity of the minimum cut decreases. Since MaxFlow=MinCut, the
maximum flow value decreases as well.
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