
Scheduling

Theory for	this	week:
All	theory	is	on	the	slides	and	in	the	exercises	of	this	week.	
For	more	theory/examples,	see	the	book	by	Pinedo:	
Scheduling:Theory,	Algorithms,	and	Systems		(Link	on	Canvas)
(Only	as	an	extra.	Not	required	for	the	exam.)

All	these	slides	are	exam	material.
You	should	be	able	to	
- understand	+	know	the	different	scheduling	problems,
- understand	+	know	the	algorithms,
- understand	+	know	the	proofs
- apply	the	theory	to	other	scheduling	problems.	

(If	some	of	this	theory	will	be	removed	from	the	exam	material,	then	this	will	
be	clearly	communicated	via	Canvas.)

Scheduling applications

−	Logistics

Scheduling applications

−	Personnel	planning

Scheduling applications

−	Healthcare

What is	scheduling?
Scheduling concerns	optimal allocation or	assignment
of	resources,	over	time,	to a	set	of	tasks/activities/jobs.	

Resourses	(Mi)	:	machines,	people,	space
Tasks	(Jj) :	production,	jobs,	classes,	flights

Schedules	may be represented by Gantt charts
Henry	Gantt	(VS)	
1861−−1919

Standard scheduling notation

Machines:
m :machines	 i=1,...,m
n : jobs j=1,...,n

Jobs:
pj :	 processing	time	of	job	j
rj :	 release	date	of	job	j (earliest	starting	time)	
dj :	 due	date	(deadline)	 (committed	completion	time)
wj :	 weight	of	job	j (importance)	

Schedule
Cj:	 completion	time	of	a	job

Standard scheduling notation

Many scheduling	problems	can	be	described	by	a	three	field	
notation α|β|γ, where	

α describes	the	machine environment
β describes	the	job characteristics,	and
γ describes	the	objective criterion	to	be	minimized	(or	max.)

Remark:		A	field	may	contain	more	than	one	entry	but	may	also	be	empty

Classification of Scheduling Problems

Example			1	|	rj |		Σj Cj
§ Single	machine.	
§ Jobs	have	release	times.	
§ Objective	is	minimizing	the	sum	of	the	completion	times.		

Machine environment (ử)
Single machine	(α	=	1)

Identical parallel	machines	(ử = P or	Pm)	
m identical machines	running	in	parrallel
pj is	the	process time	of	job	j

Uniform parallel	machines	(ử = Q or	Qm)	
m identical machines	running	at	different	speed
si is	speed	of	machine	i
pij = pj/si is	the	process time	of	job	j if scheduled on	machine	i

Unrelated parallel	machines	(ử = R or	Rm)	
m different	machines	in	parallel
pij is	the	process time	of	job	j if scheduled on	machine	i

Job characteristics (Ữ)
Release	dates		(rj)
- job	j	may	not	start	before	its	release	time	rj

Deadlines (dj)
- job	j	should	finish	before	its	deadline	dj

Preemption (pmtn)	
- processing	of	a	job	on	a	machine	may be interrupted and resumed at	

any	machine.

Unit	processing	times (pj = 1)
- each job	(operation)	has	unit	processing	times

Precedence	constraints		(prec)
- job	cannot	start	before	some	other	jobs	are	finished
- presented	by	an	acyclic	graph

Objective function (ữ)
Makespan Cmax
- Minimizing	the	last	completion	time:		Cmax = maxj Cj

Maximum	lateness	 Lmax
- Lateness	of	job	j:			Lj = Cj – dj

- Lmax = maxj Lj

Total	completion	time		Ủj Cj

Total	weighted	completion	time	Ủj wjCj

Many	more	models	in	literarture	!

Scheduling zoo

Notation	itself	creates	a	world	of	scheduling	problems.
many,	of	course,	are	not	that	relevant.	

§ http://schedulingzoo.lip6.fr/
§ http://www2.informatik.uni-osnabrueck.de/knust/class/

Let's	look	at	some	easy	scheduling	problems

1. 1 || ỦCj

2. 1 || ỦwjCj

3. 1 | rj , pmtn | ỦCj

4. 1 || Lmax

5. 1 | rj | ỦCj

6. 1 |rj, prec| ỦCj

Single	machine	problems	1|β|γ

Parallel	machine	problems
7. P | pmtn | Cmax

8. P || Cmax

9. R || ỦCj

10. R || Cmax

1 |.| ỦjCj

§ single	machine
§ minimizing	total	completion	time	ΣjCj

jobs 1 2 3

length	pj 7 2 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ΣjCj
7+9+14	=	30	
7+12+14	=	33
2+7+14	=	23
2+9+14	=	25
5+12+14	=	31	
5+7+14	=	26	

Schedule	1	
Schedule	2	
Schedule	3	
Schedule	4	
Schedule	5	
Schedule	6	

1 |.| ỦjCj

§ single	machine
§ minimizing	total	completion	time

Theorem Shortest	Processing	Time	(SPT)	rule	is	optimal.

1 2 3 n

C1 = p1
C2 = p1 + p2
C3 = p1 + p2 + p3
...
Cn = p1 + p2 + p3 + ... + pn

∑jCj = np1 + (n−1)p2 + (n−2)p3 + ... + 1pn

Proof	(sketch)

1 |pj=1| Ủj wjCj

§ single	machine
§ unit	length	jobs
§ minimizing	total	weighted completion	time

Theorem Decreasing	order	of	weights	is	optimal.

Label	jobs	in	schedule		1,2,3,... .	

Then,		∑j wjCj = 1w1 + 2w2 + ... + nwn

Proof	(sketch)

1 2 n

1 |.| Ủj wjCj

§ single	machine
§ minimizing	total	weighted completion	time

How	to	order?	By	weight?	By	length?

Smith's	ratio	rule	:
Schedule	jobs	in	decreasing	order	of	wj /pj

Theorem
Smith's	ratio	rule	is	optimal.

jobs 1 2 3

weight	wj 10 5 2

length	pj 7 2 6

5/2		>	10/7		>	2/6	

Optimal	ordering	:			2,	1,	3

1 |.| Ủj wjCj

Theorem
Smith's	ratio	rule	is	optimal.

Proof

Assume	not	in	Smith's	order:			w1/p𝟏 < w2/p2

Swap	the	jobs:

Then,	the	increase	in	total	weighted	completion	time	is:

w1 p2 −− w2 p1 < 0

à A	schedule	is	optimal	if	and	only	if	jobs	are	in	Smith's	order.

1 |rj,pmtn| Ủj Cj

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

r0

jobs 1 2 3 4

release	time	rj 0 3 4 7

length	pj 8 4 1 2

SRPT	:
At	any	moment,	process	the	job	with	the	Smallest	Remaining	Processing	Time

1 |rj,pmtn| Ủj Cj

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

r2

jobs 1 2 3 4

release	time	rj 0 3 4 7

length	pj 8 4 1 2

SRPT	:
At	any	moment,	process	the	job	with	the	Smallest	Remaining	Processing	Time

1 |rj,pmtn| Ủj Cj

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

r2

jobs 1 2 3 4

release	time	rj 0 3 4 7

length	pj 8 4 1 2

SRPT	:
At	any	moment,	process	the	job	with	the	Smallest	Remaining	Processing	Time

1 |rj,pmtn| Ủj Cj

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

r2

jobs 1 2 3 4

release	time	rj 0 3 4 7

length	pj 8 4 1 2

SRPT	:
At	any	moment,	process	the	job	with	the	Smallest	Remaining	Processing	Time

1 |rj,pmtn| Ủj Cj

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

r3

jobs 1 2 3 4

release	time	rj 0 3 4 7

length	pj 8 4 1 2

SRPT	:
At	any	moment,	process	the	job	with	the	Smallest	Remaining	Processing	Time

1 |rj,pmtn| Ủj Cj

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

r3

jobs 1 2 3 4

release	time	rj 0 3 4 7

length	pj 8 4 1 2

SRPT	:
At	any	moment,	process	the	job	with	the	Smallest	Remaining	Processing	Time

1 |rj,pmtn| Ủj Cj

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

r3

jobs 1 2 3 4

release	time	rj 0 3 4 7

length	pj 8 4 1 2

SRPT	:
At	any	moment,	process	the	job	with	the	Smallest	Remaining	Processing	Time

1 |rj,pmtn| Ủj Cj

jobs 1 2 3 4

release	time	rj 0 3 4 7

length	pj 8 4 1 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

C3

SRPT	:
At	any	moment,	process	the	job	with	the	Smallest	Remaining	Processing	Time

1 |rj,pmtn| Ủj Cj

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

C3

jobs 1 2 3 4

release	time	rj 0 3 4 7

length	pj 8 4 1 2

SRPT	:
At	any	moment,	process	the	job	with	the	Smallest	Remaining	Processing	Time

1 |rj,pmtn| Ủj Cj

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

r4

jobs 1 2 3 4

release	time	rj 0 3 4 7

length	pj 8 4 1 2

SRPT	:
At	any	moment,	process	the	job	with	the	Smallest	Remaining	Processing	Time

1 |rj,pmtn| Ủj Cj

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

r4

jobs 1 2 3 4

release	time	rj 0 3 4 7

length	pj 8 4 1 2

SRPT	:
At	any	moment,	process	the	job	with	the	Smallest	Remaining	Processing	Time

1 |rj,pmtn| Ủj Cj

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

r4

jobs 1 2 3 4

release	time	rj 0 3 4 7

length	pj 8 4 1 2

SRPT	:
At	any	moment,	process	the	job	with	the	Smallest	Remaining	Processing	Time

1 |rj,pmtn| Ủj Cj

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

C2

jobs 1 2 3 4

release	time	rj 0 3 4 7

length	pj 8 4 1 2

SRPT	:
At	any	moment,	process	the	job	with	the	Smallest	Remaining	Processing	Time

1 |rj,pmtn| Ủj Cj

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

C2

jobs 1 2 3 4

release	time	rj 0 3 4 7

length	pj 8 4 1 2

SRPT	:
At	any	moment,	process	the	job	with	the	Smallest	Remaining	Processing	Time

1 |rj,pmtn| Ủj Cj

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

C4

jobs 1 2 3 4

release	time	rj 0 3 4 7

length	pj 8 4 1 2

SRPT	:
At	any	moment,	process	the	job	with	the	Smallest	Remaining	Processing	Time

1 |rj,pmtn| Ủj Cj

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Final

jobs 1 2 3 4

release	time	rj 0 3 4 7

length	pj 8 4 1 2

C4 C1C2C3

SRPT	:
At	any	moment,	process	the	job	with	the	Smallest	Remaining	Processing	Time

1 |rj,pmtn| Ủj Cj

Theorem
SRPT	is	optimal

Proof		Consider	a	schedule	for	which	the	SRPT	rule	does	not	hold.

Red	is	shorter	but	blue	is	processed

Now	reorder:	First	process	red,	then	blue.
à Total	completion	time	decreases.

à A	schedule	is	optimal	iff	it	is	in	SRPT	order.

So	we	know	that		SRPT	is	optimal	for		1|rj,pmtn|∑	Cj

Exercise	(for	tutorial)
Show	that	SRPT	is	not	optimal	on	parallel	machines.

SPRT	on	m	parallel	machine:
At	any	moment	in	time,	process	the	m	jobs	with	smallest	remaining	
processing	time	(or	all	jobs	if	there	are	less	than	m	jobs	available	at	
that	time).

1 |rj,pmtn| Ủj Cj

1 |dj| Lmax

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

d1

jobs 1 2 3

due	date	dj 7 8 9

length	pj 6 2 2

Earliest	Due	Date	(EDD)	:
Schedule	jobs	in	increasing	order	of	due	dates.

d2 d3

Lmax = Max{−1,0,1} = 1

Lateness Lj = Cj – dj

Lmax = maxj Lj

1 |dj| Lmax

Theorem
EDD	is	optimal	

Proof
Assume	not	in	EDD	order:			d1 > d2

Swap	the	jobs:

Then,	 L2' = C2' – d2 < C2 – d2 = L2

L1' = C1' – d1 = C2 – d1 < C2 – d2 = L2

à max{L1',L2'} ≤ max{L1,L2} à Lmax' ≤ Lmax .

Hence,	EDD	is	optimal.

σ

σ'

We have seen some easy problems

1 || Ủj Cj ordering	by	length	is	optimal

1 |pj=1| Ủj wjCj ordering	by	weight	is	optimal

1 |.| Ủj wjCj ordering	by	wj/pj is	optimal

1 |rj,pmtn| Ủj Cj SRPT	is	optimal

1 |dj | Lmax EDD	is	optimal

Scheduling algorithms

Approximation algorithms

Minimization	problem
For	all	instances:

ALG ≤	αOPT (α ≥ 1)

Maximization	problem
For	all	instances:

ALG ≥	αOPT (α ≤ 1)

OPTALG ALGOPT

An	α−approximation	algorithm:
①The	algorithm	runs	in	polynomial	time.
②The	algorithm	always	produces	a	feasible	solution.
③The	value	is	within	a	factor		α of	the	optimal	value

1|rj| Ủj Cj

Theorem
Problem	1|rj| Ủj Cj is	NP−hard.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

jobs 1 2

release	time	rj 0 4

length	pj 10 1

§ release	times
§ preemption	is	not	allowed

Example

Not	allowed	:	

Possible	schedule:	

Possible	schedule:	

1|rj| Ủj Cj

A	2−approximation	algorithm	
Step	1: Apply	Shortest	Remaining	Processing	Time	(SRPT).	
Step	2: Label	jobs	by	completion	time	in	SRPT	schedule:					C1 < … < Cn.

For j=1,2, .. ,n:		Schedule	job	j	as	early	as	possible	after	time	Cj

Example

Final 1 2 3 4

4 2 1 2 4 3 4SRPT 5

5
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

jobs 1 2 3 4 5
release	time	rj 3 1 9 0 12

length	pj 1 4 1 6 1

1|rj| Ủj Cj

Proof	of	approximation	ratio	2

Denote	
Cj is	the	completion	time	of	job	j	in	SRPT	schedule
C'j is	the	completion	time	of	job	j	in	final	schedule

Observations:
1. p1+ ... + pj ≤ Cj
2. In	the	final	schedule,	between	time	Cj and	C'j there	is	no	idle	time.
3. In	the	final	schedule,	between	time	Cj and	C'j there	are	only	jobs	k ≤ j.		

à C'j ≤ Cj + (p1+ ... + pj) ≤ 2Cj

à Ủj C'j ≤ 2Ủj Cj ≤ 2OPT.

1|prec | Ủj Cj

Precedence	constraints

4 2 31
0 1 2 3 4 5 6 7 8 9 10 11 12

1 2 3

4

jobs 1 2 3 4
length	pj 5 5 1 1

Example

Theorem		1|prec | Ủj Cj is	NP−hard

(LP)		min	 Ủj Cj

s.t. Cj ≥ pj all jobs j

Cj ≥ Ck + pj all (k,j)∈ A

`no overlap of jobs' (not	a	linear	constraint)

G=(V,A)

1|prec | Ủj Cj

Denote p(S) = Ủj∈S pj :	total	processing	time	of	jobs	in	subset	S.

Lemma				Ủj∈S pjCj ≥ đ p(S)2 for	any	subset	of	jobs	S.

proof

Let S={1,2,..,k}. Then,
p1C1 = p1p1

p2C2 = p2(p1+p2)
p3C3 = p3(p1+p2+p3)
...
pkCk = pk(p1+p2+...+pk)

Ủj pjCj = đ(p1+p2+...+pk)2 +đ(p1)2 + ... +đ(pk)2

≥ đ(p1+p2+...+pk)2

= đp(S)2

1 2 3 k
C1 C2 C3 Ck0

+

1|prec | Ủj Cj

(LP)		min	 Ủj Cj

s.t. Cj ≥ pj all jobs j

Cj ≥ Ck + pj all (k,j)∈ A

Ủj∈S pjCj ≥ đ p(S)2 all	S	⊆{1,2,..,n}

2−approximation	algorithm	
Step	1: Solve	LP
Step	2: Schedule	jobs	in	order	of	increasing	LP−values.

Proof
• Feasible?	Yes,	by	LP−constraint	Cj ≥ Ck + pj for (k,j)∈ A
• Polynomial	time?
• Ratio?

1|prec | Ủj Cj

(LP)		min	 Ủj Cj

s.t. Cj ≥ pj all jobs j

Cj ≥ Ck + pj all (k,j)∈ A

Ủj∈S pjCj ≥ đ p(S)2 all	S	⊆{1,2,..,n}

Lemma (proof	omitted)
Let	C1 ≤ C2 ≤ .. ≤ Cn be	an	LP−solution.
If Ủj∈S pjCj ≥ đ p(S)2 for	all	S = {1,2,..,k} for	k=1..n,
then Ủj∈S pjCj ≥ đ p(S)2 for	all	S ⊆{1,2,..,n}

Corollary
This	LP	has	a	separation	oracle.	(see	definition	further	on)

1|prec | Ủj Cj

(LP)		min	 Ủj Cj

s.t. Cj ≥ pj all jobs j

Cj ≥ Ck + pj all (k,j)∈ A

Ủj∈S pjCj ≥ đ p(S)2 all	S	⊆{1,2,..,n}
Proof	of	ratio
Cj is	the	completion	time	of	job	j	in	the	LP
C'j is	the	completion	time	of	job	j	in	final	schedule

1 2 nk
C'k

đ p(S)2 ≤ Ủj∈S pjCj
≤ Ủj∈S pjCk
= p(S)Ck à p(S) ≤ 2Ck

Hence,	C'k=p(S) ≤ 2Ck à ALG = Ủk C'k ≤ 2 Ủk Ck ≤ 2OPT.

S={1,2,..,k} for	fixed	job	k
Final schedule:

52

52ellipsoid method

The	Simplex	method
- is	very	fast	in	practice	but
- may	take	exponential	time	in	the	worst	case

The	ellipsoid	method:
- is	not	very	fast	in	practice	but
- does	solve	LPs	in	polynomial	time	and
- may	even	solve	LPs	with	an	exponential	number	of	contraints

First	observation:
Solving	an	LP	can	be	reduced	to	finding	a	feasible	solution	to	a	system	of	linear	
inequalities:	Just	find	the	largest	c0 such	that	the	system	has	a	feasible	solution.

We	will	sketch	how	this	problem	of	finding	a	feasible	solution	can	be	solved	in	
polynomial	time.

52

53

53ellipsoid method

Mathematicians	showed	the	following	[1].

Let	E be	an	ellips	of	dimension	n and	
let	H	be	an	hyperplane	containing	the	center	x of	E.	That	means,	H splits	E exactly	in	half.

Then,	it	is	possible	to	compute	(in	polynomial	time)	an	ellips	E' that	contains	one	half	of	the	ellips	
and			

Volume(E') <(1-1/(2n))Volume(E)

E

E '
x

H

(dimension 2)

53

54

54ellipsoid method

E0

Let	F be	the	feasible	region	of	the	given	system	of	inequalities.	(It	might	be	empty.)

Mathematicians	showed	the	following	[2]:

• It	is	possible	to	compute	an	ellipse	E0 such	that	E0 contains	F,	if	F it	is	not	empty.
Denote	the	volume	of	E0 by Vmax.

• It	is	possible	to	compute	a	number	Vmin > 0 such	that	if	Volume(F) < Vmin then	
F must	be	empty.

• Further,	log(Vmax/Vmin) is	polynomially	bounded.

F

54

55

55ellipsoid method

Ei

H

F

One	iteration	of	the	ellipsoid	method	

Let	xi be	the	center	of	ellipsoid	Ei which	contains	F.
Then	either	
a) xi∈F or
b) xi ∉ F and	then	we	can	find	a	violated	inequality	(by	checking	all	inequalities).	

In	case	(a)	we	are	done.
In	case	(b)	we	compute	the	next	
(smaller)	ellipsoid	Ei+1 containing	F.

xi

Ei+1

55

56

56ellipsoid method

E0

x0

E1

x1

x2

E2

E3

x3

Ellipsoid	method	ends	in	iteration	k if:

a) xk∈F à we	found	our	solution
or

b) Volume(Ek)< Vmin à there is no	solution

à #	iterations	is	at	most	

O(n)log(Vmax/Vmin)
which	is	polynomial.

56

57

57ellipsoid method

Note	that	the	ellipsoid	method	runs	in	polynomial	time	as	long	as	
we	have	an	algorithm	that	can	do	the	following	in	polynomial	time:

The	input	is	a	system	of	n-dimensional	inequalities	and	x∈ Rn.
The	algorithm	either	
• tells	us	that	x is	in	the	feasible	region	F or
• it	returns	an	inequality	which	is	valid	for	F but	not	valid	for	x.	(A	

separating	inequality).

Such	an	algorithm	is	called	a	separation	oracle.

LPs	with	a	exponential	number	of	constraints	may	still	have	a	
separation	oracle.	Hence,	such	an	LP	can	be	solved	in	polynomial	
time	using	the	Ellipsoid	method.

57

58

58ellipsoid method
How	to	solve	this	scheduling	LP	with	an	exponential	number	of	constraints?

In	theory,	we	could	use	the	ellipsoi	method,	but	not	very	practical	(slow).
We	take	a	slightly	different	(easier)	approach.
But	we	do	use	the	fact	that	the	LP	has	a	separation	oracle.	

Remove	constraint	(*)	from	the	LP.	
Repeat:

Solve	the	LP
Let	C1, C2,..., Cn be	the	solution	found.
Let	𝝅 be		a	permutation	of	1,2,...,n such	that		C𝝅(1) ≤ C𝝅(2) ≤ ...	≤ C	𝝅(n) .
Let Sk={𝝅(1), 𝝅(2),..., 𝝅(k)}, for k=1,2,..,n.
If constraint (**) holds all Sk for k=1,2,..,n then:

the	current	solution	is	optimal	for	the	complete	LP.		Stop.
Else

add	all	the	violated	constraints Sk to the LP.

(*)

58

(LP)		min	 Ủj Cj

s.t. Cj ≥ pj all jobs j

Cj ≥ Ck + pj all (k,j)∈ A

Ủj∈S pjCj ≥ đ p(S)2 all	S	⊆{1,2,..,n}

59

59

Results	single	machine:
1) 1 || ỦCj SPT	is	optimal	

2) 1 || ỦwjCj Smith’s	ratio	rule	is	optimal:	Order	by	wj/pj

3) 1 | rj , pmtn | ỦCj SRPT	is	optimal

4) 1 || Lmax Earliest	Due	Date	(EDD)	is	optimal

5) 1 | rj | ỦCj NP-hard.	SRPT	order	gives	2-approximation.	

6) 1|prec| ỦCj NP-hard.		LP	order	gives	2-approximation.

P|.| Cmax

Scheduling	jobs	on	a	identical	parallel	machines:	

Cmax

Cmax

List	Scheduling:	
Assign	the	jobs	one	by	one	(in	arbitrary	order)	to	the	machines.	
At	any	step,	choose	the	machine	with	the	smallest	load	sofar.

A D

F

B C E

Machine 3

Machine 2

Time0

Machine 1

IH J

G

List	Scheduling

Machine 3

Machine 2

Machine 1A

D

F

B C E

Time0

IH J

G

List	Scheduling

Machine 3

Machine 2

Machine 1A

D

F

B

C E

Time0

IH J

G

List	Scheduling

Machine 3

Machine 2

Machine 1A

D

F

B

C

E

Time0

IH J

G

List	Scheduling

Machine 3

Machine 2

Machine 1A

F

B

C

E

Time0

IH J

G

D

List	Scheduling

Machine 3

Machine 2

Machine 1A

F

B

C

E

Time0

IH J

G

D

List	Scheduling

G

Machine 3

Machine 2

Machine 1A

F

B

C

E

Time0

IH J

D

List	Scheduling

Machine 3

Machine 2

Machine 1A

F

B

C

E

Time0

IH J

GD

List	Scheduling

Machine 3

Machine 2

Machine 1A

F

B

C

E

Time0

I

H

J

GD

List	Scheduling

Machine 3

Machine 2

Machine 1A

F

B

C

G

E

Time0

IH

J

GD

List	Scheduling

Machine 3

Machine 2

Machine 1A

F

B

C

G

E

Time0

IH

J

D

List	Scheduling

Machine 3

Machine 2

Machine 1A

D

F

B

C

G

E

0

IH

J

Machine 3

Machine 2

Machine 1

A

D

F

BC

G

E

0

I

H

J

Optimal Schedule

List schedule

List	Scheduling

P|.| Cmax

Theorem
List	scheduling	is	a	(2−1/m)-approximation	algorithm.

Proof

C*max :		Optimal	makespan
pmax : maxj pj

Lower	Bound	1:	C*max ≥ pmax Lower	Bound	2:	 C*max ≥ (p1+p2+...+pn)/m

Let	job	L be	last.
From	LS	alg:	 mSL ≤ (p1+p2+...+pn) – pL

Cmax = SL + pL

≤ (p1+p2+...+pn)/m +(1−1/m)pL

≤ C*max + (1−1/m)C*max

= (2−1/m)C*max

L

P|.| Cmax

Local	Search:
Start	with	any	schedule.
Repeat	as	long	as	possible:

Move	a	job	to	the	end	of	least	loaded	machine					
...	if	that	reduces	its	completion	time.

Theorem
Local	search	is	a	(2−1/m)−approximation	algorithm.
Proof

Ratio?	Follows	from	List	Scheduling	proof.			->	Exercise

Polynomial	time?		Yes.	Each	job	moves	at	most	once.	->	Exercise

P|.| Cmax

Theorem
LPT	is	a	4/3-approximation	algorithm.

Proof

Case	1:	last	job	has	pj ≤ OPT/3

à Cmax ≤ OPT + OPT/3

Case	2:	last	job	has	pj > OPT/3

à OPT has	at	most	2	jobs	per	machine

à LPT	is	optimal.

LPT	(Longest	Processing	Time	first)	
Order	jobs	:	p1 ≥ p2 ≥ .. ≥ pn.				Apply	list	scheduling	in	this	order.

LPT

LPT

R|.| ∑j Cj

Unrelated	machines
pij :			Processing	time	of	job	j depends	on	machine	i	

pij 1 2

1 1 2

2 2 1

J1
J2

M1

M2

J2
J1

M1

M2

optimal not	optimal
10 10 2

Theorem
The	problem	R|.| ∑j Cj can	be	reduced	to	the	assigment	problem

R|.| ∑j Cj

Observation:
If	job	j	is	scheduled	on	machine	i on	position	k then	it	contributes	
exactly			kpij to	the	total	completion	time.		(->	Exercise)

1 2 j n

1,1
1,2
...
1,n
2,1
...
i,k kpij

...
m,n

12k job	jMachine	i

Problem
Find	a	mincost	perfect	matching	of	
jobs	to	positions	on	machines.
à assignment	problem.

position	k		
on	machine

k+1

Machine	i-1

R|.| Cmax

• Unrelated	machines
• Minimize	length	(makespan)

R|.| Cmax

Algorithm
Step	1 Solve	LP à x, ZLP
Step	2	 Assign	j to	machine	i		if		xij=1.
Step	3 Assign	the	fractional	jobs	in	an	optimal	way.

Example:

0

M1

1
2

2

1 3

3
3

M2

Optimal	LP−solution
0

M1

1
2

2

1 3

43
M2

Final	schedule

pij 1 2 3

1 1 9 5

2 9 2 5

Theorem
Algorithm	is	a	2-approximation	algorithm	if	m is	a	constant.
Proof
Ratio:
Length	for	integer	jobs		≤	OPT
Length	for	fractional	jobs	≤	OPT à Total	length	≤	2OPT
Time:	??	 (next	slide)

R|.| Cmax

Proof		Time?
Lemma
Any	extreme	LP-solution,	has	at	most	n+m			non-zero	variables.		
Proof	
• nm variables	
• nm + n + m constraints.
• In	extreme	LP-solution,	at	least	nm	constraints	are	tight	(=)	

(Known	from	Lin.	Algebra)
à At	least	nm	– (n+m)	variables		xij =	0
à At	most	(n+m)	variables	xij >0.

Corollary
Any	extreme	LP-solution,	has	at	most		m	fractional	jobs.
Proof For	each	fractional	job,	at	least	two	variables	are	strictly	positive.

n+m ≥ 2nf + ni
and	 n = nf + ni à nf ≤	m.

à Only	O(mm)	schedules	for	fractional	jobs.

R|.| Cmax Improving the running time

Can	we	get	the	running	time	polynomial	in	m?

jobs machines Support	graph	:	edge	if	xij>0

From	lemma:	#	edges	≤	#	vertices	(n+m)	
This	even	holds	for	each	component,	
since	each	component	is	an	extreme	solution	for	the	
induced	LP.

à Each	component	is	a	tree or		a	tree	+	one	edge.

Lemma
For	fractional	jobs,	there	is	a	perfect	matching	with	the	
machines.

i

j

Bad	example:

0

M1

2

1

1M2

Optimal	LP−solution
pij 1
1 1

2 99

x11=	0.99

x21=	0.01
0.99

Algorithm
Step	1 Solve	LPà x, ZLP
Step	2	 Assign	j to	machine	i		if		xij=1.
Step	3 Assigning	fractional	jobs	in	an	optimal	way by	a	perfect	matching.

Length	of	schedule	is	at	most	OPT	+	Longest	fractional	job.

Idea:			Guess	OPT and	let	xij= 0 if pij > OPT.		

R|.| Cmax Improving the running time

Guess	the	optimal	makespan	T.

Run	the	algorithm.	Then,	either	
1. it	returns	a	schedule	of	length	at	most	2T
2. or	it	finds	no	schedule.	But	then	we	know	that	T < OPT.

OPT	?

By	binary	search,	we	find	smallest	integer	T,	say T*,	for	which	the	LP	has	a	solution.

à Length	of	schedule	is	at	most					2T* ≤ 2OPT.

T*T T

R|.| Cmax Improving the running time

Results	Parallel	machines

7. P | pmtn | Cmax - McNaughton’s	wrap	arpund	rule	is	optimal.

8. P || Cmax - NP-hard.	
- List	scheduling	is	2-approximation.
- LPT	is	4/3-approximation.

9. R || ỦCj - In	P	since	reducible	to	the	min-cost	perfect	
matching.

10. Rm || Cmax - NP-hard.	
- LP	+	enumerating	schedules	gives	2-approx.	Running	time	
exponential	in	m

- Improvement	gives	a	running	time	which	is	polynomial	in	m.

