

Theory for this week:

All theory is on the slides and in the exercises of this week. For more theory/examples, see the book by Pinedo: Scheduling:Theory, Algorithms, and Systems (Link on Canvas)

All these slides are exam material.

You should be able to

understand + know the different scheduling problems,

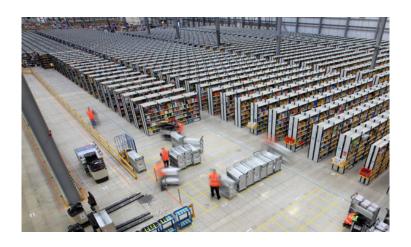
(Only as an extra. Not required for the exam.)

- understand + know the algorithms,
- understand + know the proofs
- apply the theory to other scheduling problems.

(If some of this theory will be removed from the exam material, then this will be clearly communicated via Canvas.)

Scheduling applications

Logistics

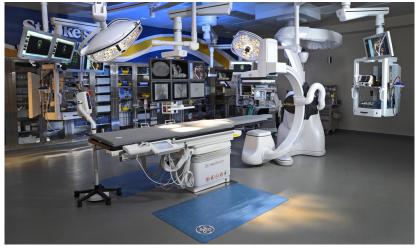


Scheduling applications

Personnel planning

Scheduling applications

- Healthcare



Standard scheduling notation

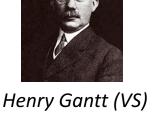
What is scheduling?

Scheduling concerns optimal allocation or assignment of <u>resources</u>, over <u>time</u>, to a set of <u>tasks</u>/activities/jobs.

Resourses (M_i): machines, people, space

Tasks (J_i) : production, jobs, classes, flights

Schedules may be represented by Gantt charts



			18611919
J_1	$oxedsymbol{M}_2$	M_3	
J_2	M_1		
J_3	M_3	M_2	M_1
J_4			M_2

M_1	J_2		$oxed{J_3}$
M_2	J_1	J_3	J_4
M_3	J_3	J_1	

Standard scheduling notation

Machines:

m:machines i=1,...,m

n: jobs j=1,...,n

Jobs:

 p_i : processing time of job j

 \mathbf{r}_{i} : release date of job j (earliest starting time)

d_i: due date (deadline) (committed completion time)

 w_i : weight of job j (importance)

Schedule

 C_i : completion time of a job

Classification of Scheduling Problems

Many scheduling problems can be described by a three field notation $\alpha \mid \beta \mid \gamma$, where

- α describes the <u>machine</u> environment
- β describes the job characteristics, and
- y describes the <u>objective</u> criterion to be minimized (or max.)

Remark: A field may contain more than one entry but may also be empty

Example $1 | r_j | \Sigma_j C_j$

- Single machine.
- Jobs have release times.
- Objective is minimizing the sum of the completion times.

Machine environment (a)

Single machine ($\alpha = 1$)

Identical parallel machines ($\alpha = P$ or Pm)

m identical machines running in parrallel

 p_{j} is the process time of job j

Uniform parallel machines ($\alpha = Q$ or Qm)

m identical machines running at different speed

S_i is speed of machine i

 $p_{ij} = p_i/s_i$ is the process time of job j if scheduled on machine i

Unrelated parallel machines ($\alpha = R$ or Rm)

m different machines in parallel

 \boldsymbol{p}_{ii} is the process time of job j if scheduled on machine i

Job characteristics (β)

Release dates (r_i)

– job j may not start before its release time \mathbf{r}_{j}

Deadlines (d_j)

- job j should finish before its deadline $d_{\rm j}$

Preemption (pmtn)

 processing of a job on a machine may be interrupted and resumed at any machine.

Unit processing times $(p_i = 1)$

each job (operation) has unit processing times

Precedence constraints (prec)

- job cannot start before some other jobs are finished
- presented by an acyclic graph

Objective function (γ)

Makespan C_{max}

- Minimizing the last completion time: $C_{max} = max_j C_j$

Maximum lateness L_{max}

- Lateness of job j: $L_j = C_j d_j$
- $L_{\text{max}} = \text{max}_j L_j$

Total completion time $\Sigma_j C_j$

Total weighted completion time $\Sigma_j \ w_j C_j$

Many more models in literarture!

Scheduling zoo

Notation itself creates a world of scheduling problems. many, of course, are not that relevant.

- http://schedulingzoo.lip6.fr/
- http://www2.informatik.uni-osnabrueck.de/knust/class/

Let's look at some easy scheduling problems

Single machine problems $1|\beta|\gamma$

- 1. $1 \mid \mid \Sigma C_j$
- 2. $1 \mid \mid \Sigma w_j C_j$
- 3. $1 \mid r_j, pmtn \mid \Sigma C_j$
- 4. 1 | L_{max}
- 5. $1 \mid r_j \mid \Sigma C_j$
- 6. $1 | r_j, prec | \Sigma C_j$

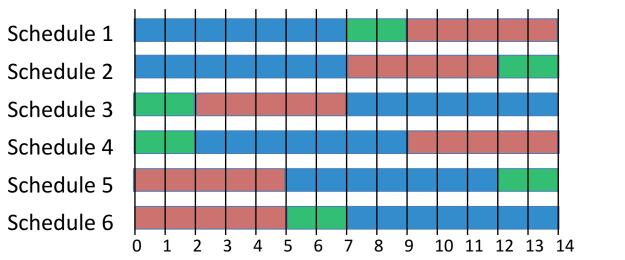
Parallel machine problems

- 7. P | pmtn | C_{max}
- 8. P | | C_{max}
- 9. $R \mid \mid \Sigma C_j$
- 10. R | | C_{max}

$1 \mid . \mid \Sigma_j C_j$

- single machine
- minimizing total completion time $\Sigma_j C_j$

jobs	1	2	3
length p _j	7	2	5



$$\Sigma_j C_j$$

$$7+9+14 = 30$$

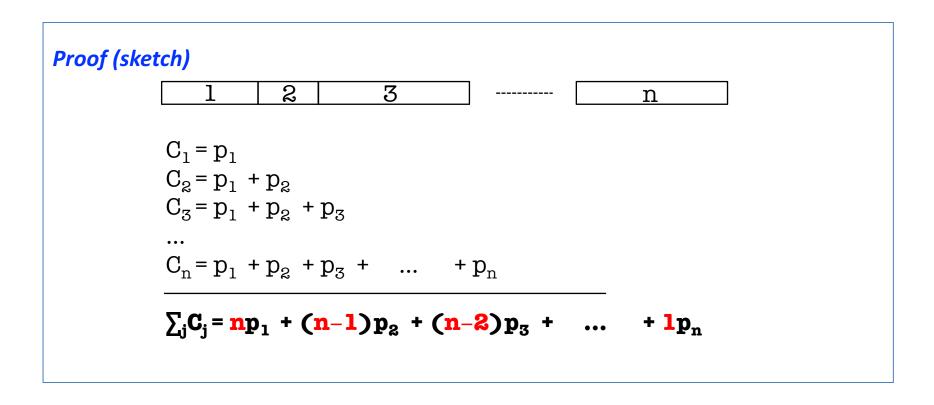
$$5+12+14 = 31$$

$$5+7+14 = 26$$

$1 \mid . \mid \Sigma_j C_j$

- single machine
- minimizing total completion time

Theorem Shortest Processing Time (SPT) rule is optimal.



$1 | p_j = 1 | \Sigma_j w_j C_j$

- single machine
- unit length jobs
- minimizing total weighted completion time

Theorem Decreasing order of weights is optimal.

$1 \mid . \mid \Sigma_j w_j C_j$

- single machine
- minimizing total weighted completion time

jobs	1	2	3
weight w _j	10	5	2
length p _i	7	2	6

Optimal ordering: 2, 1, 3

How to order? By weight? By length?

Smith's ratio rule:

Schedule jobs in decreasing order of $w_{\rm j}/p_{\rm j}$

Theorem

Smith's ratio rule is optimal.

$1 \mid . \mid \Sigma_{j} w_{j}C_{j}$

Theorem

Smith's ratio rule is optimal.

Proof

Assume not in Smith's order: $\mathbf{w_1/p_1} < \mathbf{w_2/p_2}$

Swap the jobs:

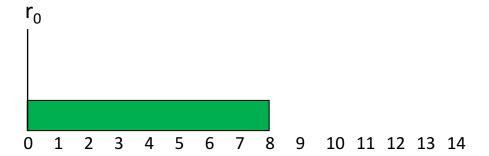
Then, the increase in total weighted completion time is:

$$\mathbf{w_1} \ \mathbf{p_2} -- \ \mathbf{w_2} \ \mathbf{p_1} < \mathbf{0}$$

→ A schedule is optimal if and only if jobs are in Smith's order.

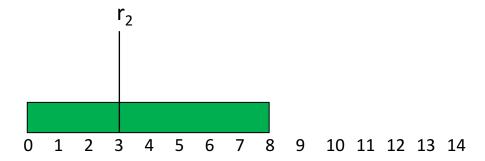
$1 | r_j, pmtn | \Sigma_j C_j$

jobs	1	2	3	4
release time r _j	0	3	4	7
length p _j	8	4	1	2



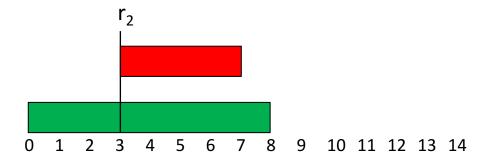
SRPT:

jobs	1	2	3	4
release time r _j	0	3	4	7
length p _j	8	4	1	2



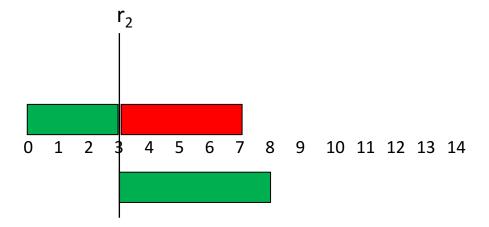
SRPT:

jobs	1	2	3	4
release time r _j	0	3	4	7
length p _j	8	4	1	2



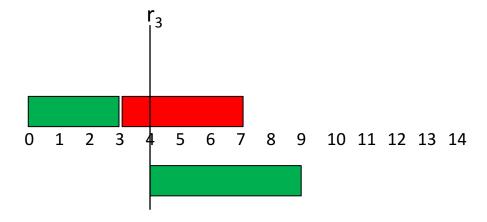
SRPT:

jobs	1	2	3	4
release time r _j	0	3	4	7
length p _j	8	4	1	2



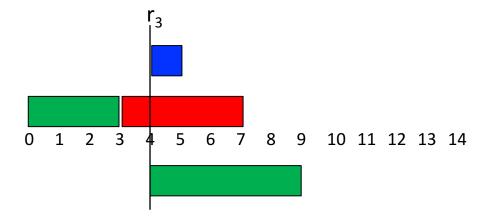
SRPT:

jobs	1	2	3	4
release time r _j	0	3	4	7
length p _j	8	4	1	2



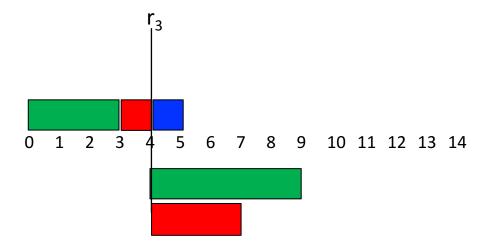
SRPT:

jobs	1	2	3	4
release time r _j	0	3	4	7
length p _j	8	4	1	2



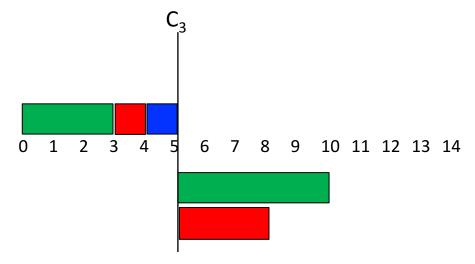
SRPT:

jobs	1	2	3	4
release time r _j	0	3	4	7
length p _j	8	4	1	2



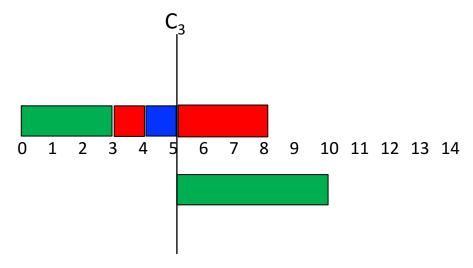
SRPT:

jobs	1	2	3	4
release time r _j	0	3	4	7
length p _j	8	4	1	2



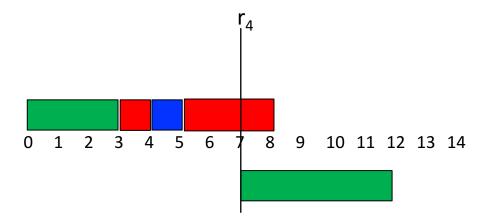
SRPT:

jobs	1	2	3	4
release time r _j	0	3	4	7
length p _j	8	4	1	2



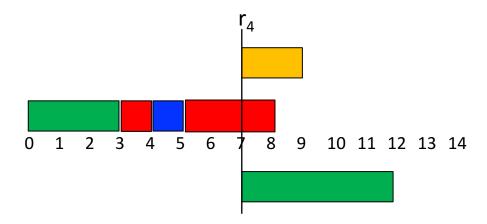
SRPT:

jobs	1	2	3	4
release time r _j	0	3	4	7
length p _j	8	4	1	2



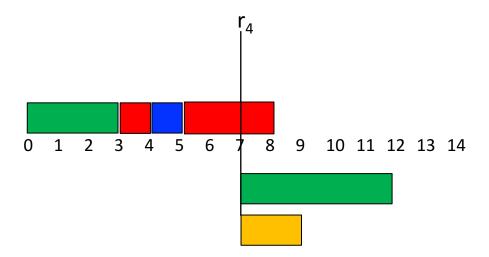
SRPT:

jobs	1	2	3	4
release time r _j	0	3	4	7
length p _j	8	4	1	2



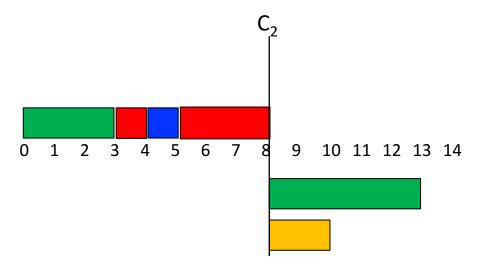
SRPT:

jobs	1	2	3	4
release time r _j	0	3	4	7
length p _j	8	4	1	2



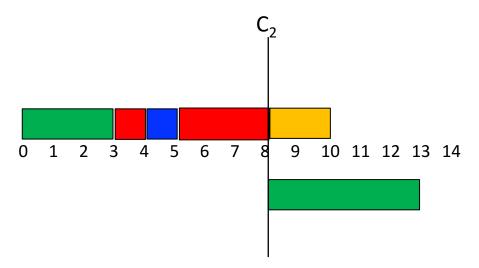
SRPT:

jobs	1	2	3	4
release time r _j	0	3	4	7
length p _j	8	4	1	2



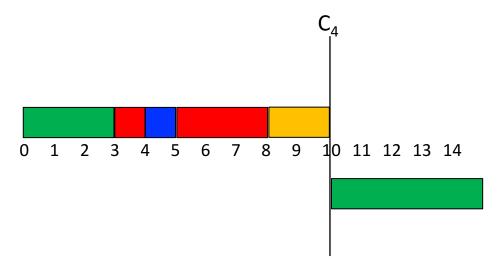
SRPT:

jobs	1	2	3	4
release time r _j	0	3	4	7
length p _j	8	4	1	2



SRPT:

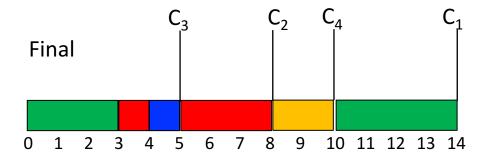
jobs	1	2	3	4
release time r _j	0	3	4	7
length p _j	8	4	1	2



SRPT:

$1 | r_j, pmtn | \Sigma_j C_j$

jobs	1	2	3	4
release time r _j	0	3	4	7
length p _j	8	4	1	2

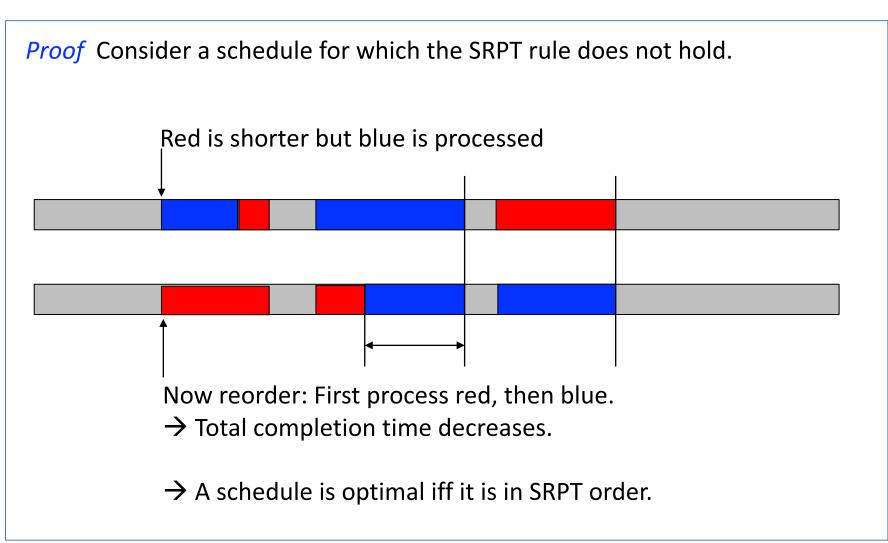


SRPT:

$1 | r_j, pmtn | \Sigma_j C_j$

Theorem

SRPT is optimal



$1 | r_j, pmtn | \Sigma_j C_j$

So we know that SRPT is optimal for $1|r_i,pmtn|\sum C_i$

Exercise (for tutorial)

Show that SRPT is not optimal on parallel machines.

SPRT on m parallel machine:

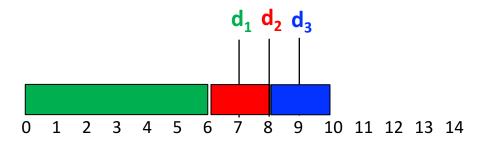
At any moment in time, process the m jobs with smallest remaining processing time (or all jobs if there are less than m jobs available at that time).

$1 \mid d_j \mid L_{max}$

jobs	1	2	3
due date d _j	7	8	9
length p _j	6	2	2

Lateness
$$L_j = C_j - d_j$$

$$L_{\text{max}} = \text{max}_{j} L_{j}$$



$$L_{\text{max}} = Max\{-1,0,1\} = 1$$

Earliest Due Date (EDD):

Schedule jobs in increasing order of due dates.

$1 \mid d_j \mid L_{max}$

Hence, EDD is optimal.

Theorem

EDD is optimal

Proof Assume not in EDD order: $d_1 > d_2$ σ Swap the jobs: σ' $L_2' = C_2' - d_2 < C_2 - d_2 = L_2$ Then, $L_1' = C_1' - d_1 = C_2 - d_1 < C_2 - d_2 = L_2$ $\rightarrow \max\{L_1', L_2'\} \leq \max\{L_1, L_2\} \rightarrow L_{\max}' \leq L_{\max}.$

We have seen some easy problems

٦	7	\cap
1	۷i	\cup_i
	 J	J

ordering by length is optimal

$$1 | p_j = 1 | \Sigma_j w_j C_j$$

ordering by weight is optimal

$$1 \mid . \mid \Sigma_j \, w_j C_j$$

ordering by w_i/p_i is optimal

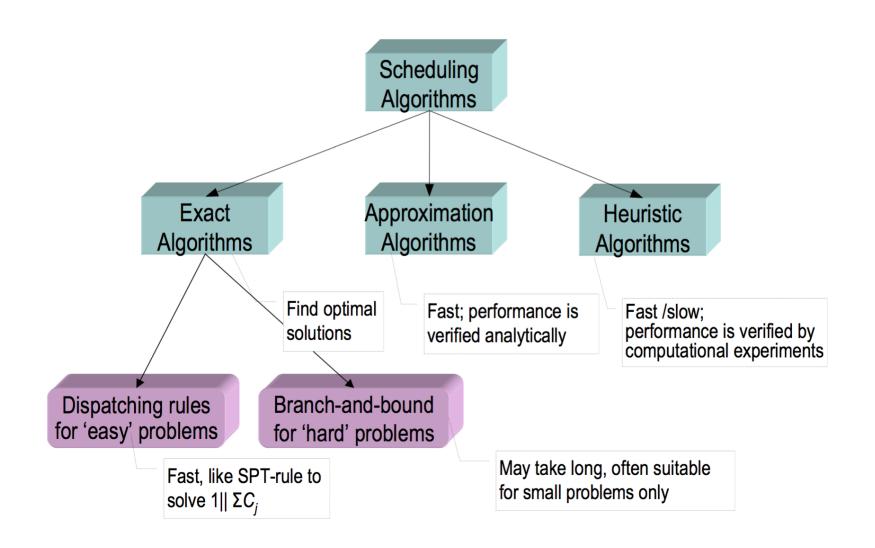
$$1 | \mathbf{r}_{j}, pmtn | \Sigma_{j} C_{j}$$

SRPT is optimal

$$1\mid d_{j}\mid L_{max}$$

EDD is optimal

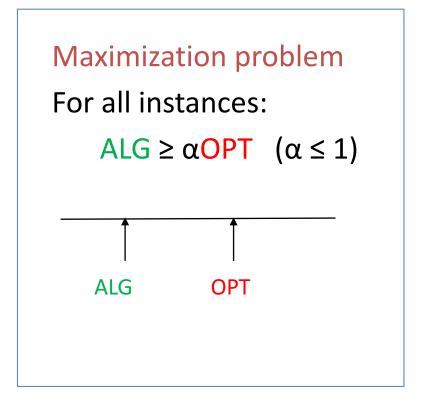
Scheduling algorithms

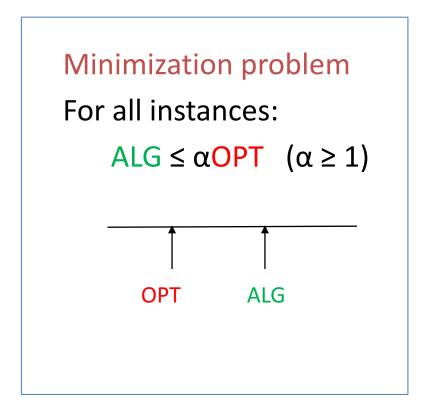


Approximation algorithms

An α -approximation algorithm:

- 1 The algorithm runs in polynomial time.
- (2) The algorithm always produces a feasible solution.
- \bigcirc The value is within a factor α of the optimal value



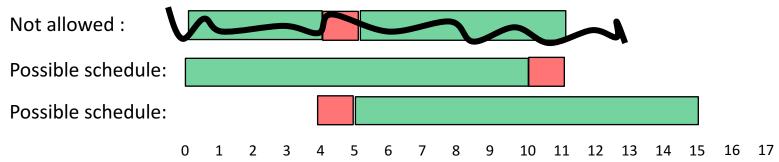


$1|\mathbf{r}_{j}|\Sigma_{j}C_{j}$

- release times
- preemption is not allowed

Example

jobs	1	2
release time r _j	0	4
length p _j	10	1



Theorem

Problem $1|r_j| \Sigma_j C_j$ is NP-hard.

$1|\mathbf{r}_{j}| \Sigma_{j} C_{j}$

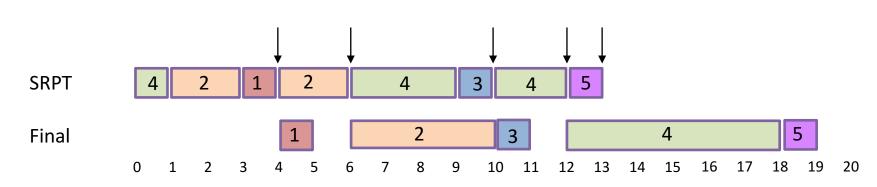
A 2-approximation algorithm

Step 1: Apply Shortest Remaining Processing Time (SRPT).

Step 2: Label jobs by completion time in SRPT schedule: $C_1 < ... < C_n$. For j=1,2,...,n: Schedule job j as early as possible after time C_j

Example

jobs	1	2	3	4	5
release time r _j	3	1	9	0	12
length p _i	1	4	1	6	1



$1|\mathbf{r}_{j}| \Sigma_{j} C_{j}$

Proof of approximation ratio 2

Denote

 C_j is the completion time of job j in SRPT schedule C_j^{\prime} is the completion time of job j in final schedule

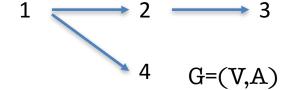
Observations:

- 1. $p_1 + ... + p_j \le C_j$
- 2. In the final schedule, between time C_i and C'_i there is no idle time.
- 3. In the final schedule, between time C_j and C'_j there are only jobs $k \le j$.
- \rightarrow $C'_{j} \le C_{j} + (p_{1} + ... + p_{j}) \le 2C_{j}$
- ightarrow $\Sigma_{j} C'_{j} \leq 2\Sigma_{j} C_{j} \leq 2OPT.$

Precedence constraints

Example

jobs	1	2	3	4
length p _j	5	5	1	1



Theorem $1 | prec | \Sigma_i C_i$ is NP-hard

(LP) min
$$\Sigma_j C_j$$

$$s.t. \quad C_j \geq p_j \qquad \qquad \text{all jobs j}$$

$$C_j \geq C_k + p_j \qquad \qquad \text{all } (k,j) \in A$$

`no overlap of jobs'

(not a linear constraint)

Denote $p(S) = \Sigma_{j \in S} p_j$: total processing time of jobs in subset S.

Lemma $\Sigma_{j \in S} p_j C_j \ge \frac{1}{2} p(S)^2$ for any subset of jobs S. **proof**

Let $S=\{1,2,...,k\}$. Then,

$$p_1C_1 = p_1p_1$$

 $p_2C_2 = p_2(p_1+p_2)$
 $p_3C_3 = p_3(p_1+p_2+p_3)$

• • •

$$+ \frac{p_k C_k = p_k (p_1 + p_2 + ... + p_k)}{\Sigma_j p_j C_j = \frac{1}{2} (p_1 + p_2 + ... + p_k)^2 + \frac{1}{2} (p_1)^2 + ... + \frac{1}{2} (p_k)^2}$$

$$\geq \frac{1}{2} (p_1 + p_2 + ... + p_k)^2$$

$$= \frac{1}{2} p(S)^2$$

(LP) min
$$\Sigma_j C_j$$

s.t.
$$C_j \ge p_j$$
 all jobs j
$$C_j \ge C_k + p_j \qquad \text{all } (k,j) \in A$$

$$\Sigma_{i \in S} \ p_i C_i \ge \frac{1}{2} \ p(S)^2 \quad \text{all } S \subseteq \{1,2,...,n\}$$

2-approximation algorithm

Step 1: Solve LP

Step 2: Schedule jobs in order of increasing LP-values.

Proof

- Feasible? Yes, by LP-constraint $C_j \ge C_k + p_j$ for $(k,j) \in A$
- Polynomial time?
- Ratio?

(LP) min
$$\Sigma_j C_j$$

$$s.t. \quad C_j \geq p_j \qquad \qquad \text{all jobs j}$$

$$C_i \geq C_k + p_i \qquad \qquad \text{all } (k,j) \subseteq A$$

$$\Sigma_{j \in S} p_j C_j \ge \frac{1}{2} p(S)^2$$
 all $S \subseteq \{1,2,...,n\}$

Lemma (proof omitted)

```
 \begin{array}{ll} \text{Let } C_1 \leq C_2 \leq ... \leq C_n \text{ be an LP-solution.} \\ \text{If} & \Sigma_{j \in S} \; p_j C_j \geq \frac{1}{2} \; p(S)^2 & \text{for all } S = \{1,2,..,k\} \; \text{for } k=1..n, \\ \text{then} & \Sigma_{j \in S} \; p_j C_j \geq \frac{1}{2} \; p(S)^2 & \text{for all } S \subseteq \{1,2,..,n\} \\ \end{array}
```

Corollary

This LP has a separation oracle. (see definition further on)

(LP) min
$$\Sigma_j C_j$$

s.t.
$$C_j \ge p_j$$
 all jobs j
$$C_j \ge C_k + p_j$$
 all $(k,j) \in A$
$$\Sigma_{j \in S} p_j C_j \ge \frac{1}{2} p(S)^2$$
 all $S \subseteq \{1,2,...,n\}$

Proof of ratio

 $\boldsymbol{C}_{j}\;$ is the completion time of job j in the LP

C'_j is the completion time of job j in final schedule

Hence,
$$C'_k = p(S) \le 2C_k$$
 \rightarrow ALG = $\Sigma_k C'_k \le 2 \Sigma_k C_k \le 20PT$.

The Simplex method

- is very fast in practice but
- may take exponential time in the worst case

The ellipsoid method:

- is not very fast in practice but
- does solve LPs in polynomial time and
- may even solve LPs with an exponential number of contraints

First observation:

Solving an LP can be reduced to finding a feasible solution to a system of linear inequalities: Just find the largest c_0 such that the system has a feasible solution.

$$c^{T}x \ge c_{0}$$

$$Ax \le b$$

$$x \ge 0$$

$$x \ge 0$$

$$C^{T}x \ge c_{0}$$

$$Ax \le b$$

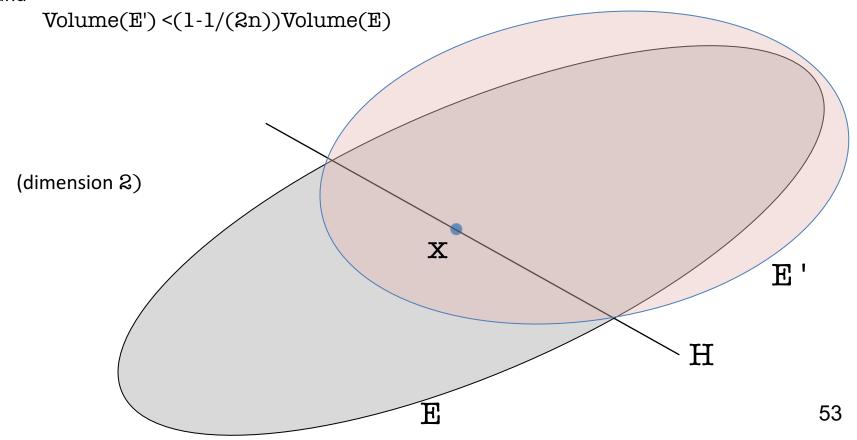
$$x \ge 0$$

We will sketch how this problem of finding a feasible solution can be solved in polynomial time.

Mathematicians showed the following [1].

Let E be an ellips of dimension n and let H be an hyperplane containing the center x of E. That means, H splits E exactly in half.

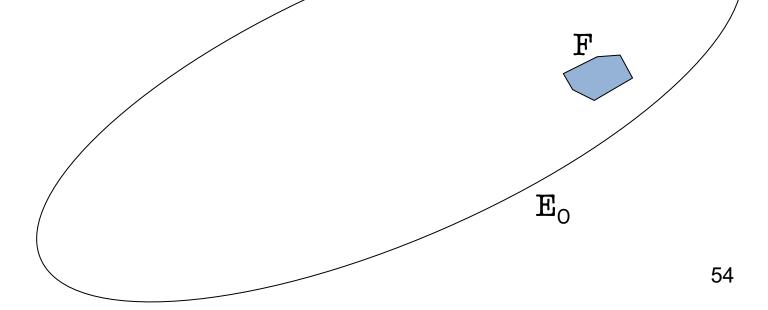
Then, it is possible to compute (in polynomial time) an ellips E' that contains one half of the ellips and



Let F be the feasible region of the given system of inequalities. (It might be empty.)

Mathematicians showed the following [2]:

- It is possible to compute an ellipse E_0 such that E_0 contains F, if F it is not empty. Denote the volume of E_0 by $V_{\rm max}$.
- It is possible to compute a number $V_{\min} > 0$ such that if $Volume(F) < V_{\min}$ then F must be empty.
- Further, $log(V_{max}/V_{min})$ is polynomially bounded.

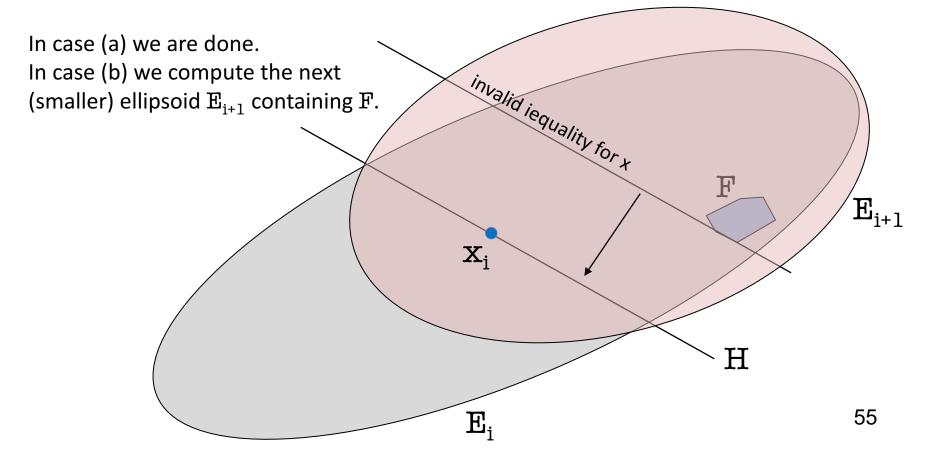


One iteration of the ellipsoid method

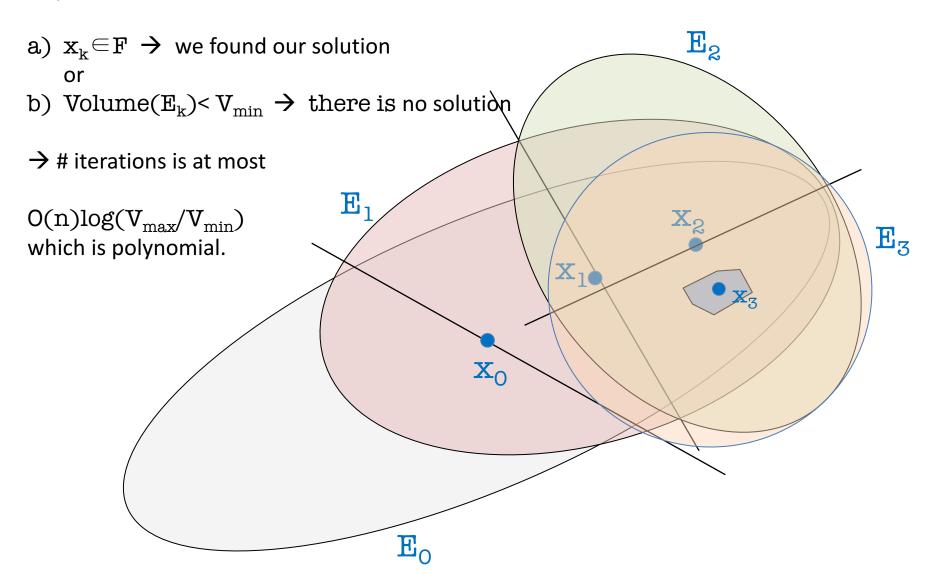
Let x_i be the center of ellipsoid E_i which contains F.

Then either

- a) $x_i \in F$ or
- b) $x_i \notin F$ and then we can find a violated inequality (by checking all inequalities).



Ellipsoid method ends in iteration k if:



Note that the ellipsoid method runs in polynomial time as long as we have an algorithm that can do the following <u>in polynomial time</u>:

The input is a system of n-dimensional inequalities and $\mathbf{x} \in \mathbb{R}^n$. The algorithm either

- tells us that x is in the feasible region F or
- it returns an inequality which is valid for F but not valid for x. (A separating inequality).

Such an algorithm is called a separation oracle.

LPs with a exponential number of constraints may still have a separation oracle. Hence, such an LP can be solved in polynomial time using the Ellipsoid method.

How to solve this scheduling LP with an exponential number of constraints?

(LP) min
$$\Sigma_j \ C_j$$

$$s.t. \ C_j \geq p_j \qquad \qquad all \ jobs \ j$$

$$C_j \geq C_k + p_j \qquad \qquad all \ (k,j) \subseteq A$$

In theory, we could use the ellipse in the od, that wery practical (slow).

We take a slightly different (easier) approach.

But we do use the fact that the LP has a separation oracle.

Remove constraint (*) from the LP.

Repeat:

Solve the LP

Let $C_1, C_2, ..., C_n$ be the solution found.

Let π be a permutation of 1,2,...,n such that $C_{\pi(1)} \leq C_{\pi(2)} \leq ... \leq C_{\pi(n)}$.

Let $S_k = {\pi(1), \pi(2), ..., \pi(k)}$, for k = 1, 2, ..., n.

If constraint (**) holds all S_k for k=1,2,...,n then:

the current solution is optimal for the complete LP. **Stop**.

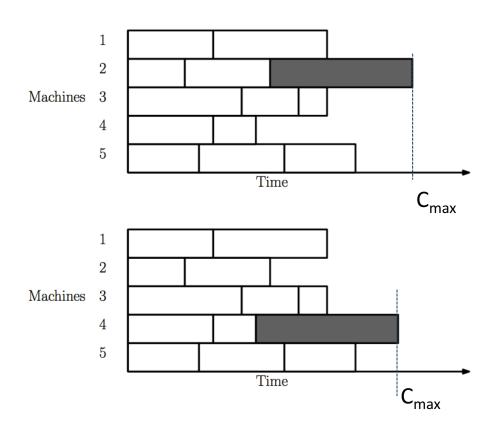
Else

add all the violated constraints S_k to the LP.

Results single machine:

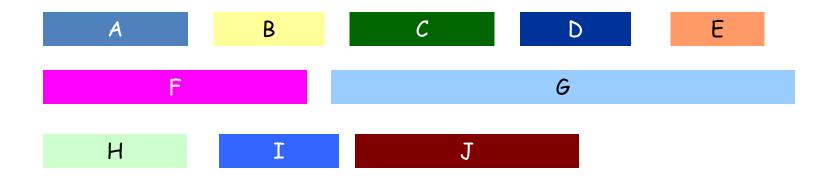
- 1) $1 \mid \mid \Sigma C_j$ SPT is optimal
- 2) $1 \mid | \Sigma w_j C_j$ Smith's ratio rule is optimal: Order by w_j/p_j
- 3) $1 \mid \mathbf{r}_{j}$, pmtn $\mid \Sigma C_{j}$ SRPT is optimal
- 4) $1 \mid \mid L_{max}$ Earliest Due Date (EDD) is optimal
- 5) $1 \mid r_j \mid \Sigma C_j$ NP-hard. SRPT order gives 2-approximation.
- 6) $1 | prec | \Sigma C_i$ NP-hard. LP order gives 2-approximation.

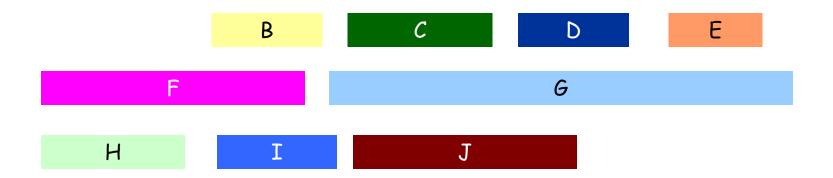
Scheduling jobs on a identical parallel machines:

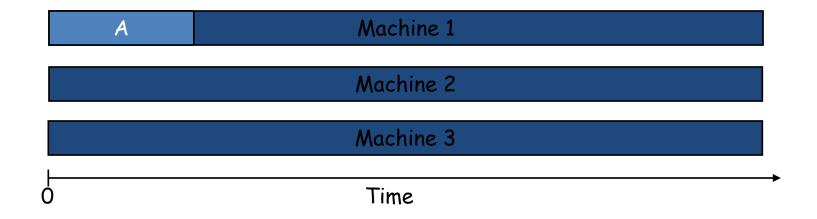


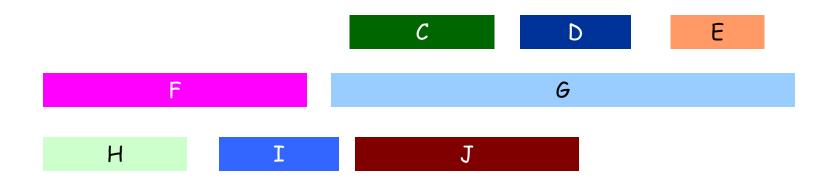
List Scheduling:

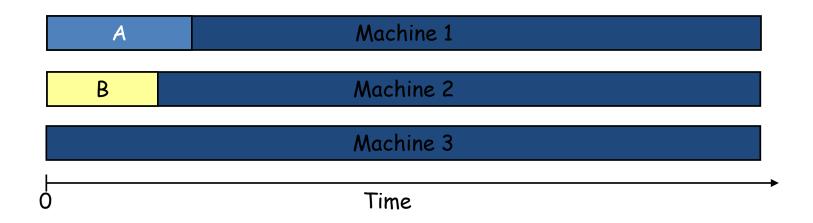
Assign the jobs one by one (in arbitrary order) to the machines. At any step, choose the machine with the smallest load sofar.

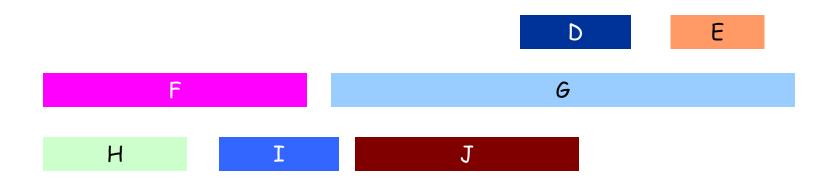


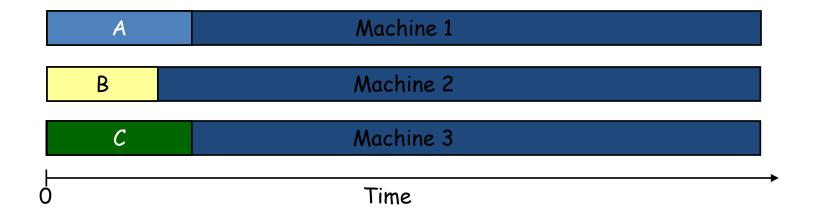


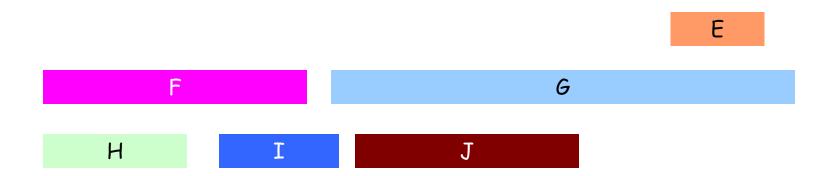


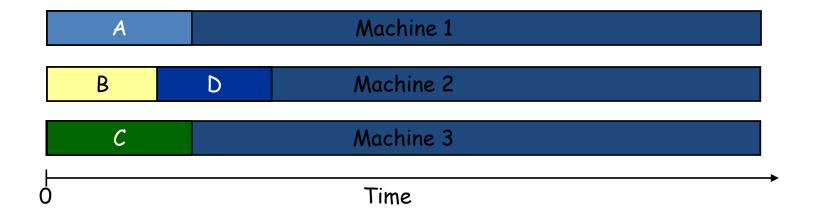


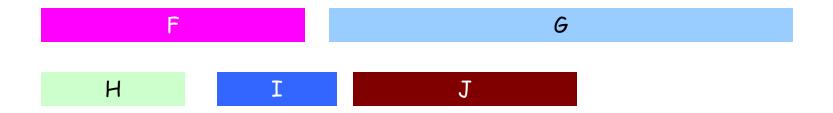


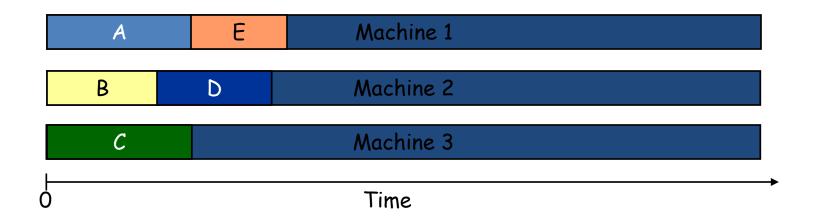


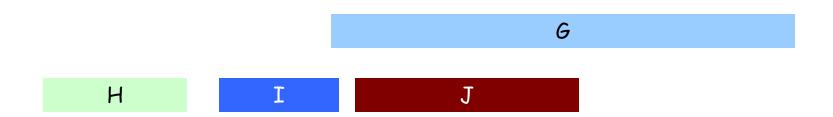


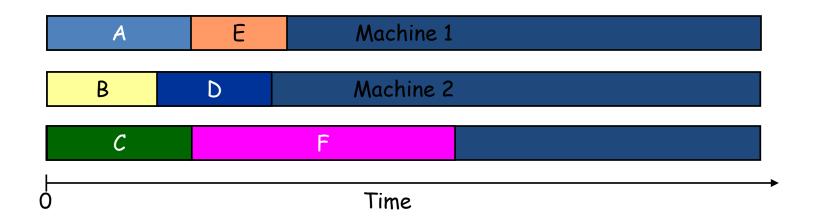


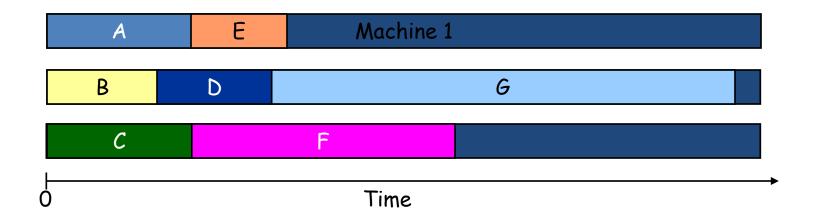


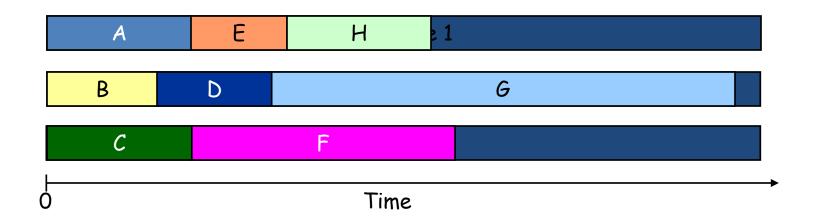


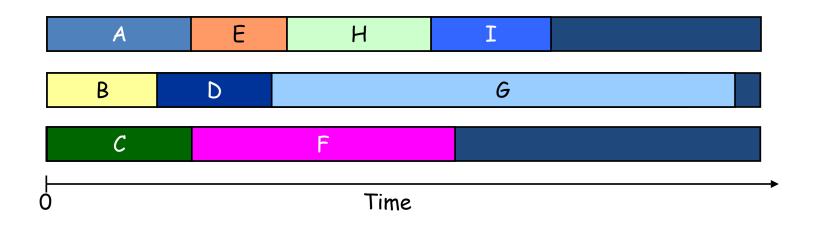


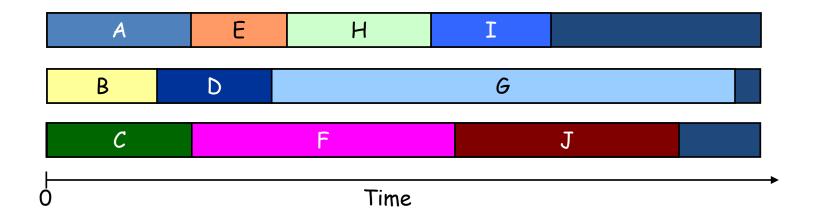


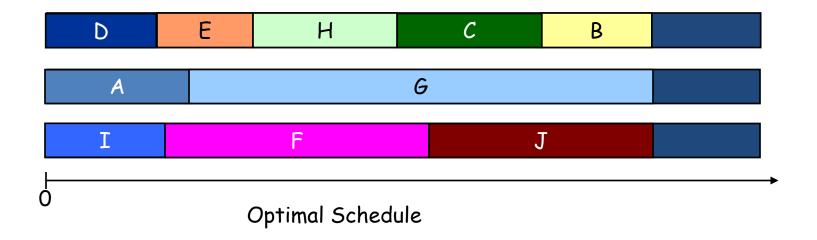


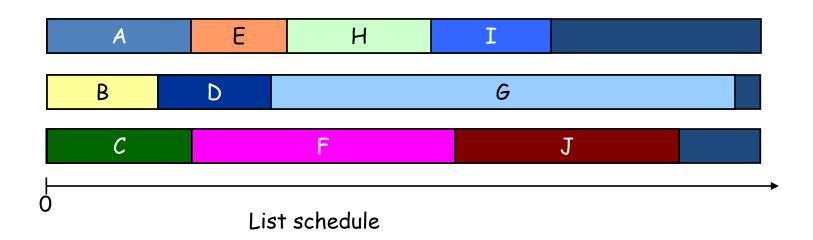












P|.| C_{max}

Theorem

List scheduling is a (2-1/m)-approximation algorithm.

Proof

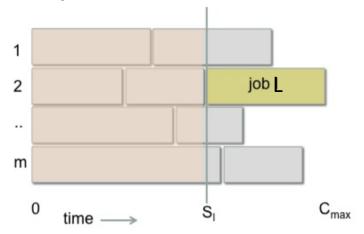
C*_{max}: Optimal makespan

 $p_{max} : max_j p_j$

Lower Bound 1: $C^*_{max} \ge p_{max}$

Lower Bound 2: $C^*_{max} \ge (p_1 + p_2 + ... + p_n)/m$

Let job L be last.

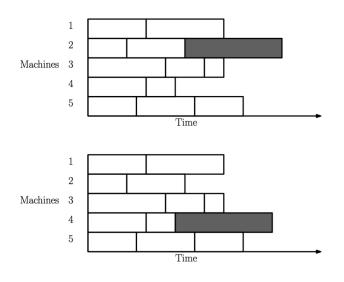


From LS alg:
$$mS_L \le (p_1 + p_2 + ... + p_n) - p_L$$

$$C_{max} = S_L + p_L$$

 $\leq (p_1 + p_2 + ... + p_n)/m + (1 - 1/m)p_L$
 $\leq C^*_{max} + (1 - 1/m)C^*_{max}$
 $= (2 - 1/m)C^*_{max}$

P|.| C_{max}



Local Search:

Start with any schedule.

Repeat as long as possible:

Move a job to the end of least loaded machine ... if that reduces its completion time.

Theorem

Local search is a (2-1/m)-approximation algorithm.

Proof

Ratio? Follows from List Scheduling proof. -> Exercise

Polynomial time? Yes. Each job moves at most once. -> Exercise

P|.| C_{max}

LPT (Longest Processing Time first)

Order jobs : $p_1 \ge p_2 \ge ... \ge p_n$. Apply list scheduling in this order.

Theorem

LPT is a 4/3-approximation algorithm.

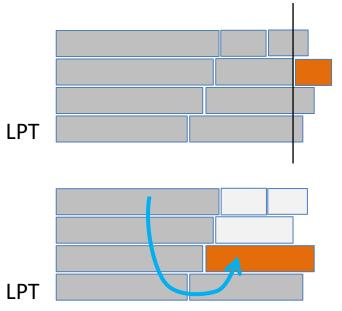
Proof

Case 1: last job has $p_j \le OPT/3$

$$\rightarrow$$
 $C_{max} \leq OPT + OPT/3$

Case 2: last job has $p_i > OPT/3$

- → OPT has at most 2 jobs per machine
- \rightarrow LPT is optimal.

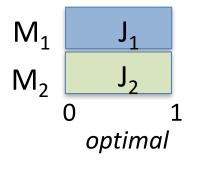


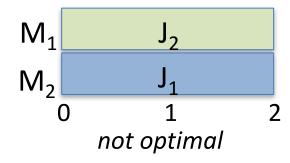
$\mathbb{R}|.|\sum_{j} C_{j}$

Unrelated machines

 p_{ij} : Processing time of job j depends on machine i

p _{ij}	1	2
1	1	2
2	2	1





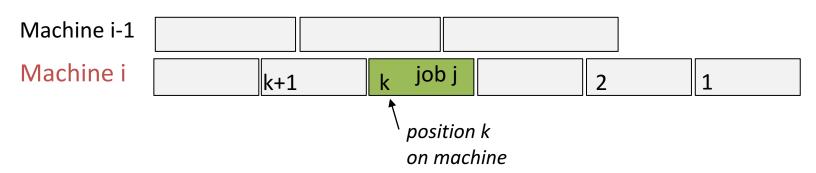
Theorem

The problem $\mathbb{R}[.] \sum_{j} C_{j}$ can be reduced to the assignment problem

$\mathbb{R}|.|\sum_{j} C_{j}$

Observation:

If job j is scheduled on machine i on position k then it contributes exactly $\mathbf{kp_{ii}}$ to the total completion time. (-> Exercise)



	1	ಬ	j	n
1,1				
1,2				
•••				
1,n				
2,1				
•••				
i,k			kp _{ij}	
•••				
m,n				

Problem

Find a mincost perfect matching of jobs to positions on machines.

→ assignment problem.

$R|.|C_{\max}$

- Unrelated machines
- Minimize length (makespan)

(LP) min
$$Z$$

$$s.t.$$
 $\sum_{i=1}^{m} x_{ij} = 1$ for all jobs j $\sum_{j=1}^{n} x_{ij} p_{ij} \leq Z$ for all machines i $x_{ij} \geq 0$ for all i, j

RI. C_{max}

Algorithm

Step 1 Solve LP \rightarrow x, Z_{LP}

Step 2 Assign j to machine i if $x_{ii}=1$.

Step 3 Assign the fractional jobs in an optimal way.

Example:

p _{ij}	1	2	3	M_1	1		3		M_1	1		3		
1	1	9	5	M_2	2	2		3	M_2		2			
2	9	2	5	_ ()	1	2		3	0	1 2	2	3	4
					Optimal LP-solution				Final scl	nedule				

Theorem

Algorithm is a 2-approximation algorithm if m is a constant.

Proof

Ratio:

Length for integer jobs ≤ OPT Length for fractional jobs ≤ OPT

→ Total length ≤ 2OPT

Time: ?? (next slide)

Proof Time?

Lemma

Any extreme LP-solution, has at most n+m non-zero variables.

Proof

- nm variables
- nm + n + m constraints.
- In extreme LP-solution, at least nm constraints are tight (=)
 (Known from Lin. Algebra)
- \rightarrow At least nm (n+m) variables $x_{ii} = 0$
- \rightarrow At most (n+m) variables $x_{ij} > 0$.

Corollary

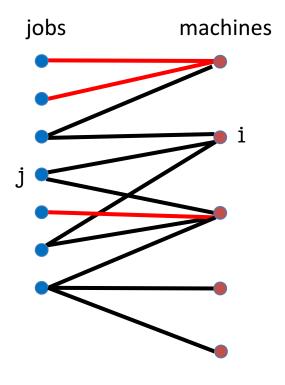
Any extreme LP-solution, has at most m fractional jobs.

Proof For each fractional job, at least two variables are strictly positive.

$$n+m \geq 2n_f + n_i$$
 and
$$n = n_f + n_i \qquad \xrightarrow{\blacktriangleright} \quad n_f \leq m.$$

→ Only O(m^m) schedules for fractional jobs.

Can we get the running time polynomial in m?



Support graph : edge if x_{ij} >0

From lemma: # edges ≤ # vertices (n+m)
This even holds for each component,
since each component is an extreme solution for the
induced LP.

→ Each component is a tree or a tree + one edge.

Lemma

For fractional jobs, there is a perfect matching with the machines.

$R \, | \, . \, | \, C_{ ext{max}}$ Improving the running time

Algorithm

Step 1 Solve LP \rightarrow x, Z_{LP}

Step 2 Assign j to machine i if $x_{ij}=1$.

Step 3 Assigning fractional jobs in an optimal way by a perfect matching.

Length of schedule is at most OPT + Longest fractional job.

Bad example:

p _{ij}	1
1	1
2	99

Optimal LP-solution



(LP) min Z

$$s.t.$$
 $\sum_{i=1}^{m} x_{ij} = 1$ for all jobs j $\sum_{j=1}^{n} x_{ij} p_{ij} \leq Z$ for all machines i $x_{ij} \geq 0$ for all i, j

Idea: Guess OPT and let x_{ij} = 0 if p_{ij} > OPT.

$R|.|C_{\max}$ Improving the running time

Guess the optimal makespan *T.*

Let
$$J(T) = \{(i, j) \mid p_{ij} \leq T\}$$

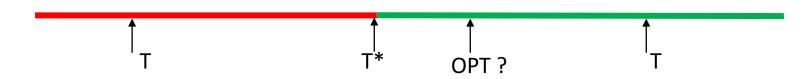
$$\sum_{i:(i,j)\in J_T} x_{ij} p_{ij} = 1 \quad \text{for all jobs } j$$

$$\sum_{j:(i,j)\in J_T} x_{ij} p_{ij} \leq T \quad \text{for all machines } i$$

$$x_{ij} \geq 0 \quad \text{for all } (i,j) \in J(T).$$

Run the algorithm. Then, either

- 1. it returns a schedule of length at most 2T
- 2. or it finds no schedule. But then we know that T < OPT.



By binary search, we find smallest integer T, say T^* , for which the LP has a solution.

→ Length of schedule is at most $2T^* \le 2OPT$.

Results Parallel machines

- 7. P | pmtn | C_{max}
- McNaughton's wrap around rule is optimal.

8. P | | C_{max}

- NP-hard.
- List scheduling is 2-approximation.
- LPT is 4/3-approximation.

9. $R \mid \mid \Sigma C_j$

 In P since reducible to the min-cost perfect matching.

10. Rm | | C_{max}

- NP-hard.
- LP + enumerating schedules gives 2-approx. Running time exponential in m
- Improvement gives a running time which is polynomial in m.