
Scheduling



Theory for	this	week:
All	theory	is	on	the	slides	and	in	the	exercises	of	this	week.	
For	more	theory/examples,	see	the	book	by	Pinedo:	
Scheduling:Theory,	Algorithms,	and	Systems		(Link	on	Canvas)
(Only	as	an	extra.	Not	required	for	the	exam.)

All	these	slides	are	exam	material.
You	should	be	able	to	
- understand	+	know	the	different	scheduling	problems,
- understand	+	know	the	algorithms,
- understand	+	know	the	proofs
- apply	the	theory	to	other	scheduling	problems.	

(If	some	of	this	theory	will	be	removed	from	the	exam	material,	then	this	will	
be	clearly	communicated	via	Canvas.)



Scheduling applications

−	Logistics



Scheduling applications

−	Personnel	planning



Scheduling applications

−	Healthcare



What is	scheduling?
Scheduling concerns	optimal allocation or	assignment
of	resources,	over	time,	to a	set	of	tasks/activities/jobs.	

Resourses	(Mi)	:	machines,	people,	space
Tasks	(Jj) :	production,	jobs,	classes,	flights

Schedules	may be represented by Gantt charts
Henry	Gantt	(VS)	
1861−−1919

Standard scheduling notation



Machines:
m :machines	 i=1,...,m
n : jobs j=1,...,n

Jobs:
pj :	 processing	time	of	job	j
rj :	 release	date	of	job	j (earliest	starting	time)	
dj :	 due	date	(deadline)	 (committed	completion	time)
wj :	 weight	of	job	j (importance)	

Schedule
Cj:	 completion	time	of	a	job

Standard scheduling notation



Many scheduling	problems	can	be	described	by	a	three	field	
notation α|β|γ, where	

α describes	the	machine environment
β describes	the	job characteristics,	and
γ describes	the	objective criterion	to	be	minimized	(or	max.)

Remark:		A	field	may	contain	more	than	one	entry	but	may	also	be	empty

Classification of Scheduling Problems

Example			1	|	rj |		Σj Cj
§ Single	machine.	
§ Jobs	have	release	times.	
§ Objective	is	minimizing	the	sum	of	the	completion	times.		



Machine environment  (ử ) 
Single machine	(α	=	1)

Identical parallel	machines	(ử = P or	Pm)	
m identical machines	running	in	parrallel
pj is	the	process time	of	job	j

Uniform parallel	machines	(ử = Q or	Qm)	
m identical machines	running	at	different	speed
si is	speed	of	machine	i
pij = pj/si is	the	process time	of	job	j if scheduled on	machine	i

Unrelated parallel	machines	(ử = R or	Rm)	
m different	machines	in	parallel
pij is	the	process time	of	job	j if scheduled on	machine	i



Job characteristics (Ữ ) 
Release	dates		(rj)
- job	j	may	not	start	before	its	release	time	rj

Deadlines (dj)
- job	j	should	finish	before	its	deadline	dj

Preemption (pmtn)	
- processing	of	a	job	on	a	machine	may be interrupted and resumed at	

any	machine.

Unit	processing	times (pj = 1)
- each job	(operation)	has	unit	processing	times

Precedence	constraints		(prec)
- job	cannot	start	before	some	other	jobs	are	finished
- presented	by	an	acyclic	graph



Objective function (ữ) 
Makespan Cmax
- Minimizing	the	last	completion	time:		Cmax = maxj Cj

Maximum	lateness	 Lmax
- Lateness	of	job	j:			Lj = Cj – dj

- Lmax = maxj Lj

Total	completion	time		Ủj Cj

Total	weighted	completion	time	Ủj wjCj

Many	more	models	in	literarture	!



Scheduling zoo

Notation	itself	creates	a	world	of	scheduling	problems.
many,	of	course,	are	not	that	relevant.	

§ http://schedulingzoo.lip6.fr/
§ http://www2.informatik.uni-osnabrueck.de/knust/class/



Let's	look	at	some	easy	scheduling	problems	.....



1. 1 || ỦCj

2. 1 || ỦwjCj

3. 1 | rj , pmtn | ỦCj

4. 1 || Lmax

5. 1 | rj | ỦCj

6. 1 |rj, prec| ỦCj

Single	machine	problems	1|β|γ



Parallel	machine	problems
7. P | pmtn | Cmax

8. P || Cmax

9. R || ỦCj

10. R || Cmax



1 |.| ỦjCj

§ single	machine
§ minimizing	total	completion	time	ΣjCj

jobs 1 2 3

length	pj 7 2 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ΣjCj
7+9+14	=	30	
7+12+14	=	33
2+7+14	=	23
2+9+14	=	25
5+12+14	=	31	
5+7+14	=	26	

Schedule	1	
Schedule	2	
Schedule	3	
Schedule	4	
Schedule	5	
Schedule	6	



1 |.| ỦjCj

§ single	machine
§ minimizing	total	completion	time

Theorem Shortest	Processing	Time	(SPT)	rule	is	optimal.

1 2 3 n

C1 = p1
C2 = p1 + p2
C3 = p1 + p2 + p3
...
Cn = p1 + p2 + p3 +     ...      + pn

∑jCj = np1 + (n−1)p2 + (n−2)p3 +     ...      + 1pn

Proof	(sketch)



1 |pj=1| Ủj wjCj

§ single	machine
§ unit	length	jobs
§ minimizing	total	weighted completion	time

Theorem Decreasing	order	of	weights	is	optimal.

Label	jobs	in	schedule		1,2,3,...  .	

Then,		∑j wjCj = 1w1 + 2w2 +   ...      + nwn

Proof	(sketch)

1 2 n



1 |.| Ủj wjCj

§ single	machine
§ minimizing	total	weighted completion	time

How	to	order?	By	weight?	By	length?

Smith's	ratio	rule	:
Schedule	jobs	in	decreasing	order	of	wj /pj

Theorem
Smith's	ratio	rule	is	optimal.

jobs 1 2 3

weight	wj 10 5 2

length	pj 7 2 6

5/2		>	10/7		>	2/6	

Optimal	ordering	:			2,	1,	3



1 |.| Ủj wjCj

Theorem
Smith's	ratio	rule	is	optimal.

Proof

Assume	not	in	Smith's	order:			w1/p𝟏 <  w2/p2

Swap	the	jobs:

Then,	the	increase	in	total	weighted	completion	time	is:

w1 p2 −− w2 p1 < 0

à A	schedule	is	optimal	if	and	only	if	jobs	are	in	Smith's	order.



1 |rj,pmtn| Ủj Cj

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

r0

jobs 1 2 3 4

release	time	rj 0 3 4 7

length	pj 8 4 1 2

SRPT	:
At	any	moment,	process	the	job	with	the	Smallest	Remaining	Processing	Time



1 |rj,pmtn| Ủj Cj

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

r2

jobs 1 2 3 4

release	time	rj 0 3 4 7

length	pj 8 4 1 2

SRPT	:
At	any	moment,	process	the	job	with	the	Smallest	Remaining	Processing	Time



1 |rj,pmtn| Ủj Cj

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

r2

jobs 1 2 3 4

release	time	rj 0 3 4 7

length	pj 8 4 1 2

SRPT	:
At	any	moment,	process	the	job	with	the	Smallest	Remaining	Processing	Time



1 |rj,pmtn| Ủj Cj

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

r2

jobs 1 2 3 4

release	time	rj 0 3 4 7

length	pj 8 4 1 2

SRPT	:
At	any	moment,	process	the	job	with	the	Smallest	Remaining	Processing	Time



1 |rj,pmtn| Ủj Cj

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

r3

jobs 1 2 3 4

release	time	rj 0 3 4 7

length	pj 8 4 1 2

SRPT	:
At	any	moment,	process	the	job	with	the	Smallest	Remaining	Processing	Time



1 |rj,pmtn| Ủj Cj

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

r3

jobs 1 2 3 4

release	time	rj 0 3 4 7

length	pj 8 4 1 2

SRPT	:
At	any	moment,	process	the	job	with	the	Smallest	Remaining	Processing	Time



1 |rj,pmtn| Ủj Cj

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

r3

jobs 1 2 3 4

release	time	rj 0 3 4 7

length	pj 8 4 1 2

SRPT	:
At	any	moment,	process	the	job	with	the	Smallest	Remaining	Processing	Time



1 |rj,pmtn| Ủj Cj

jobs 1 2 3 4

release	time	rj 0 3 4 7

length	pj 8 4 1 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

C3

SRPT	:
At	any	moment,	process	the	job	with	the	Smallest	Remaining	Processing	Time



1 |rj,pmtn| Ủj Cj

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

C3

jobs 1 2 3 4

release	time	rj 0 3 4 7

length	pj 8 4 1 2

SRPT	:
At	any	moment,	process	the	job	with	the	Smallest	Remaining	Processing	Time



1 |rj,pmtn| Ủj Cj

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

r4

jobs 1 2 3 4

release	time	rj 0 3 4 7

length	pj 8 4 1 2

SRPT	:
At	any	moment,	process	the	job	with	the	Smallest	Remaining	Processing	Time



1 |rj,pmtn| Ủj Cj

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

r4

jobs 1 2 3 4

release	time	rj 0 3 4 7

length	pj 8 4 1 2

SRPT	:
At	any	moment,	process	the	job	with	the	Smallest	Remaining	Processing	Time



1 |rj,pmtn| Ủj Cj

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

r4

jobs 1 2 3 4

release	time	rj 0 3 4 7

length	pj 8 4 1 2

SRPT	:
At	any	moment,	process	the	job	with	the	Smallest	Remaining	Processing	Time



1 |rj,pmtn| Ủj Cj

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

C2

jobs 1 2 3 4

release	time	rj 0 3 4 7

length	pj 8 4 1 2

SRPT	:
At	any	moment,	process	the	job	with	the	Smallest	Remaining	Processing	Time



1 |rj,pmtn| Ủj Cj

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

C2

jobs 1 2 3 4

release	time	rj 0 3 4 7

length	pj 8 4 1 2

SRPT	:
At	any	moment,	process	the	job	with	the	Smallest	Remaining	Processing	Time



1 |rj,pmtn| Ủj Cj

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

C4

jobs 1 2 3 4

release	time	rj 0 3 4 7

length	pj 8 4 1 2

SRPT	:
At	any	moment,	process	the	job	with	the	Smallest	Remaining	Processing	Time



1 |rj,pmtn| Ủj Cj

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Final

jobs 1 2 3 4

release	time	rj 0 3 4 7

length	pj 8 4 1 2

C4 C1C2C3

SRPT	:
At	any	moment,	process	the	job	with	the	Smallest	Remaining	Processing	Time



1 |rj,pmtn| Ủj Cj

Theorem
SRPT	is	optimal

Proof		Consider	a	schedule	for	which	the	SRPT	rule	does	not	hold.

Red	is	shorter	but	blue	is	processed

Now	reorder:	First	process	red,	then	blue.
à Total	completion	time	decreases.

à A	schedule	is	optimal	iff	it	is	in	SRPT	order.



So	we	know	that		SRPT	is	optimal	for		1|rj,pmtn|∑	Cj

Exercise	(for	tutorial)
Show	that	SRPT	is	not	optimal	on	parallel	machines.

SPRT	on	m	parallel	machine:
At	any	moment	in	time,	process	the	m	jobs	with	smallest	remaining	
processing	time	(or	all	jobs	if	there	are	less	than	m	jobs	available	at	
that	time).

1 |rj,pmtn| Ủj Cj



1 |dj| Lmax

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

d1

jobs 1 2 3

due	date	dj 7 8 9

length	pj 6 2 2

Earliest	Due	Date	(EDD)	:
Schedule	jobs	in	increasing	order	of	due	dates.

d2 d3

Lmax  = Max{−1,0,1} = 1 

Lateness Lj = Cj – dj

Lmax = maxj Lj



1 |dj| Lmax

Theorem
EDD	is	optimal	

Proof
Assume	not	in	EDD	order:			d1 >  d2

Swap	the	jobs:

Then,	 L2' =  C2' – d2 < C2 – d2 = L2

L1' =  C1' – d1 = C2 – d1 < C2 – d2 = L2

à max{L1',L2'} ≤ max{L1,L2} à Lmax' ≤  Lmax .

Hence,	EDD	is	optimal.

σ

σ'



We have seen some easy problems

1 || Ủj Cj ordering	by	length	is	optimal

1 |pj=1| Ủj wjCj ordering	by	weight	is	optimal

1 |.| Ủj wjCj ordering	by	wj/pj is	optimal

1 |rj,pmtn| Ủj Cj SRPT	is	optimal

1 |dj | Lmax EDD	is	optimal



Scheduling algorithms



Approximation algorithms

Minimization	problem
For	all	instances:

ALG ≤	αOPT (α ≥ 1)

Maximization	problem
For	all	instances:

ALG ≥	αOPT (α ≤ 1)

OPTALG ALGOPT

An	α−approximation	algorithm:
①The	algorithm	runs	in	polynomial	time.
②The	algorithm	always	produces	a	feasible	solution.
③The	value	is	within	a	factor		α of	the	optimal	value



1|rj| Ủj Cj

Theorem
Problem	1|rj| Ủj Cj is	NP−hard.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

jobs 1 2

release	time	rj 0 4

length	pj 10 1

§ release	times
§ preemption	is	not	allowed

Example

Not	allowed	:	

Possible	schedule:	

Possible	schedule:	



1|rj| Ủj Cj

A	2−approximation	algorithm	
Step	1: Apply	Shortest	Remaining	Processing	Time	(SRPT).	
Step	2: Label	jobs	by	completion	time	in	SRPT	schedule:					C1 <  … <  Cn.

For j=1,2, .. ,n:		Schedule	job	j	as	early	as	possible	after	time	Cj

Example

Final 1 2 3 4

4 2 1 2 4 3 4SRPT 5

5
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

jobs 1 2 3 4 5
release	time	rj 3 1 9 0 12

length	pj 1 4 1 6 1



1|rj| Ủj Cj

Proof	of	approximation	ratio	2

Denote	
Cj is	the	completion	time	of	job	j	in	SRPT	schedule
C'j is	the	completion	time	of	job	j	in	final	schedule

Observations:
1. p1+ ... + pj ≤ Cj
2. In	the	final	schedule,	between	time	Cj and	C'j there	is	no	idle	time.
3. In	the	final	schedule,	between	time	Cj and	C'j there	are	only	jobs	k ≤ j.		

à C'j ≤  Cj + (p1+ ... + pj) ≤ 2Cj

à Ủj C'j ≤ 2Ủj Cj  ≤ 2OPT. 



1|prec | Ủj Cj

Precedence	constraints

4 2 31
0 1 2 3 4 5 6 7 8 9 10 11 12

1 2 3

4

jobs 1 2 3 4
length	pj 5 5 1 1

Example

Theorem		1|prec | Ủj Cj  is	NP−hard

(LP)		min	 Ủj Cj

s.t. Cj ≥ pj all jobs j

Cj ≥ Ck + pj all (k,j)∈ A

`no overlap of jobs'  (not	a	linear	constraint)

G=(V,A)



1|prec | Ủj Cj

Denote p(S) = Ủj∈S pj    :	total	processing	time	of	jobs	in	subset	S.

Lemma				Ủj∈S pjCj ≥ đ p(S)2   for	any	subset	of	jobs	S.

proof

Let S={1,2,..,k}. Then,
p1C1 = p1p1

p2C2 = p2(p1+p2)
p3C3 = p3(p1+p2+p3)
... 
pkCk = pk(p1+p2+...+pk)

Ủj pjCj =  đ(p1+p2+...+pk)2 +đ(p1)2 + ... +đ(pk)2

≥ đ(p1+p2+...+pk)2

= đp(S)2

1 2 3 k
C1 C2 C3 Ck0

+



1|prec | Ủj Cj

(LP)		min	 Ủj Cj

s.t. Cj ≥ pj all jobs j

Cj ≥ Ck + pj all (k,j)∈ A

Ủj∈S pjCj ≥ đ p(S)2   all	S	⊆{1,2,..,n}

2−approximation	algorithm	
Step	1: Solve	LP
Step	2: Schedule	jobs	in	order	of	increasing	LP−values.

Proof
• Feasible?	Yes,	by	LP−constraint	Cj ≥ Ck + pj for (k,j)∈ A
• Polynomial	time?
• Ratio?



1|prec | Ủj Cj

(LP)		min	 Ủj Cj

s.t. Cj ≥ pj all jobs j

Cj ≥ Ck + pj all (k,j)∈ A

Ủj∈S pjCj ≥ đ p(S)2   all	S	⊆{1,2,..,n}

Lemma (proof	omitted)
Let	C1 ≤ C2 ≤  .. ≤ Cn be	an	LP−solution.
If Ủj∈S pjCj ≥ đ p(S)2 for	all	S  = {1,2,..,k} for	k=1..n,
then Ủj∈S pjCj ≥ đ p(S)2 for	all	S ⊆{1,2,..,n} 

Corollary
This	LP	has	a	separation	oracle.	(see	definition	further	on)



1|prec | Ủj Cj

(LP)		min	 Ủj Cj

s.t. Cj ≥ pj all jobs j

Cj ≥ Ck + pj all (k,j)∈ A

Ủj∈S pjCj ≥ đ p(S)2   all	S	⊆{1,2,..,n}
Proof	of	ratio
Cj  is	the	completion	time	of	job	j	in	the	LP
C'j is	the	completion	time	of	job	j	in	final	schedule

1 2 nk
C'k

đ p(S)2 ≤ Ủj∈S pjCj
≤ Ủj∈S pjCk
= p(S)Ck à p(S) ≤ 2Ck 

Hence,	C'k=p(S) ≤ 2Ck     à ALG = Ủk C'k ≤ 2 Ủk Ck ≤ 2OPT.

S={1,2,..,k}  for	fixed	job	k
Final schedule:



52

52ellipsoid method     

The	Simplex	method
- is	very	fast	in	practice	but
- may	take	exponential	time	in	the	worst	case

The	ellipsoid	method:
- is	not	very	fast	in	practice	but
- does	solve	LPs	in	polynomial	time	and
- may	even	solve	LPs	with	an	exponential	number	of	contraints

First	observation:
Solving	an	LP	can	be	reduced	to	finding	a	feasible	solution	to	a	system	of	linear	
inequalities:	Just	find	the	largest	c0 such	that	the	system	has	a	feasible	solution.

We	will	sketch	how	this	problem	of	finding	a	feasible	solution	can	be	solved	in	
polynomial	time.

52
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53ellipsoid method     

Mathematicians	showed	the	following	[1].

Let	E be	an	ellips	of	dimension	n and	
let	H	be	an	hyperplane	containing	the	center	x of	E.	That	means,	H splits	E exactly	in	half.

Then,	it	is	possible	to	compute	(in	polynomial	time)	an	ellips	E' that	contains	one	half	of	the	ellips	
and			

Volume(E') <(1-1/(2n))Volume(E)

E

E '
x

H

(dimension 2)

53
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54ellipsoid method     

E0

Let	F be	the	feasible	region	of	the	given	system	of	inequalities.	(It	might	be	empty.)

Mathematicians	showed	the	following	[2]:

• It	is	possible	to	compute	an	ellipse	E0 such	that	E0 contains	F,	if	F it	is	not	empty.
Denote	the	volume	of	E0 by Vmax.

• It	is	possible	to	compute	a	number	Vmin > 0 such	that	if	Volume(F) < Vmin then	
F must	be	empty.

• Further,	log(Vmax/Vmin) is	polynomially	bounded.

F

54
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55ellipsoid method     

Ei

H

F

One	iteration	of	the	ellipsoid	method	

Let	xi be	the	center	of	ellipsoid	Ei which	contains	F.
Then	either	
a) xi∈F or
b) xi ∉ F and	then	we	can	find	a	violated	inequality	(by	checking	all	inequalities).	

In	case	(a)	we	are	done.
In	case	(b)	we	compute	the	next	
(smaller)	ellipsoid	Ei+1 containing	F.

xi

Ei+1

55
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56ellipsoid method     

E0

x0

E1

x1

x2

E2

E3

x3

Ellipsoid	method	ends	in	iteration	k if:

a) xk∈F  à we	found	our	solution
or

b) Volume(Ek)< Vmin à there is no	solution

à #	iterations	is	at	most	

O(n)log(Vmax/Vmin)
which	is	polynomial.

56
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57ellipsoid method     

Note	that	the	ellipsoid	method	runs	in	polynomial	time	as	long	as	
we	have	an	algorithm	that	can	do	the	following	in	polynomial	time:

The	input	is	a	system	of	n-dimensional	inequalities	and	x∈ Rn.
The	algorithm	either	
• tells	us	that	x is	in	the	feasible	region	F or
• it	returns	an	inequality	which	is	valid	for	F but	not	valid	for	x.	(A	

separating	inequality).

Such	an	algorithm	is	called	a	separation	oracle.

LPs	with	a	exponential	number	of	constraints	may	still	have	a	
separation	oracle.	Hence,	such	an	LP	can	be	solved	in	polynomial	
time	using	the	Ellipsoid	method.

57
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58ellipsoid method     
How	to	solve	this	scheduling	LP	with	an	exponential	number	of	constraints?

In	theory,	we	could	use	the	ellipsoi	method,	but	not	very	practical	(slow).
We	take	a	slightly	different	(easier)	approach.
But	we	do	use	the	fact	that	the	LP	has	a	separation	oracle.	

Remove	constraint	(*)	from	the	LP.	
Repeat:

Solve	the	LP
Let	C1, C2,..., Cn be	the	solution	found.
Let	𝝅 be		a	permutation	of	1,2,...,n such	that		C𝝅(1) ≤ C𝝅(2) ≤ ...	≤ C	𝝅(n) . 
Let Sk={𝝅(1), 𝝅(2),..., 𝝅(k)}, for k=1,2,..,n.
If constraint (**) holds all Sk for k=1,2,..,n then:

the	current	solution	is	optimal	for	the	complete	LP.		Stop.
Else

add	all	the	violated	constraints Sk to the LP.

(*)

58

(LP)		min	 Ủj Cj

s.t. Cj ≥ pj all jobs j

Cj ≥ Ck + pj all (k,j)∈ A

Ủj∈S pjCj ≥ đ p(S)2   all	S	⊆{1,2,..,n}
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59

Results	single	machine:
1) 1 || ỦCj SPT	is	optimal	

2) 1 || ỦwjCj Smith’s	ratio	rule	is	optimal:	Order	by	wj/pj

3) 1 | rj , pmtn | ỦCj SRPT	is	optimal

4) 1 || Lmax Earliest	Due	Date	(EDD)	is	optimal

5) 1 | rj | ỦCj NP-hard.	SRPT	order	gives	2-approximation.	

6) 1|prec| ỦCj NP-hard.		LP	order	gives	2-approximation.



P|.| Cmax

Scheduling	jobs	on	a	identical	parallel	machines:	

Cmax

Cmax

List	Scheduling:	
Assign	the	jobs	one	by	one	(in	arbitrary	order)	to	the	machines.	
At	any	step,	choose	the	machine	with	the	smallest	load	sofar.



A D

F

B C E

Machine 3

Machine 2

Time0

Machine 1

IH J

G

List	Scheduling



Machine 3

Machine 2

Machine 1A

D

F

B C E

Time0

IH J

G

List	Scheduling



Machine 3

Machine 2

Machine 1A

D

F

B

C E

Time0

IH J

G

List	Scheduling



Machine 3

Machine 2

Machine 1A

D

F

B

C

E

Time0

IH J

G

List	Scheduling



Machine 3

Machine 2

Machine 1A

F

B

C

E

Time0

IH J

G

D

List	Scheduling



Machine 3

Machine 2

Machine 1A

F

B

C

E

Time0

IH J

G

D

List	Scheduling



G

Machine 3

Machine 2

Machine 1A

F

B

C

E

Time0

IH J

D

List	Scheduling



Machine 3

Machine 2

Machine 1A

F

B

C

E

Time0

IH J

GD

List	Scheduling



Machine 3

Machine 2

Machine 1A

F

B

C

E

Time0

I

H

J

GD

List	Scheduling



Machine 3

Machine 2

Machine 1A

F

B

C

G

E

Time0

IH

J

GD

List	Scheduling



Machine 3

Machine 2

Machine 1A

F

B

C

G

E

Time0

IH

J

D

List	Scheduling



Machine 3

Machine 2

Machine 1A

D

F

B

C

G

E

0

IH

J

Machine 3

Machine 2

Machine 1

A

D

F

BC

G

E

0

I

H

J

Optimal Schedule

List schedule

List	Scheduling



P|.| Cmax

Theorem
List	scheduling	is	a	(2−1/m)-approximation	algorithm.

Proof

C*max :		Optimal	makespan
pmax     :   maxj pj

Lower	Bound	1:	C*max ≥ pmax Lower	Bound	2:	 C*max ≥ (p1+p2+...+pn)/m

Let	job	L be	last.
From	LS	alg:	 mSL ≤ (p1+p2+...+pn) – pL

Cmax =  SL + pL

≤ (p1+p2+...+pn)/m +(1−1/m)pL

≤ C*max + (1−1/m)C*max

= (2−1/m)C*max

L



P|.| Cmax

Local	Search:
Start	with	any	schedule.
Repeat	as	long	as	possible:

Move	a	job	to	the	end	of	least	loaded	machine					
...	if	that	reduces	its	completion	time.

Theorem
Local	search	is	a	(2−1/m)−approximation	algorithm.
Proof

Ratio?	Follows	from	List	Scheduling	proof.			->	Exercise

Polynomial	time?		Yes.	Each	job	moves	at	most	once.	->	Exercise



P|.| Cmax

Theorem
LPT	is	a	4/3-approximation	algorithm.

Proof

Case	1:	last	job	has	pj ≤ OPT/3

à Cmax ≤  OPT + OPT/3 

Case	2:	last	job	has	pj > OPT/3

à OPT has	at	most	2	jobs	per	machine

à LPT	is	optimal.

LPT	(Longest	Processing	Time	first)	
Order	jobs	:	p1 ≥ p2 ≥ .. ≥ pn.				Apply	list	scheduling	in	this	order.

LPT

LPT



R|.| ∑j Cj

Unrelated	machines
pij :			Processing	time	of	job	j depends	on	machine	i	

pij 1 2

1 1 2

2 2 1

J1
J2

M1

M2

J2
J1

M1

M2

optimal not	optimal
10 10 2

Theorem
The	problem	R|.| ∑j Cj  can	be	reduced	to	the	assigment	problem



R|.| ∑j Cj

Observation:
If	job	j	is	scheduled	on	machine	i on	position	k then	it	contributes	
exactly			kpij to	the	total	completion	time.		(->	Exercise)

1 2 j n

1,1
1,2
...
1,n
2,1
...
i,k kpij

...
m,n

12k job	jMachine	i

Problem
Find	a	mincost	perfect	matching	of	
jobs	to	positions	on	machines.
à assignment	problem.

position	k		
on	machine

k+1

Machine	i-1



R|.| Cmax

• Unrelated	machines
• Minimize	length	(makespan)



R|.| Cmax

Algorithm
Step	1 Solve	LP à x, ZLP
Step	2	 Assign	j to	machine	i		if		xij=1.
Step	3 Assign	the	fractional	jobs	in	an	optimal	way.

Example:

0

M1

1
2

2

1 3

3
3

M2

Optimal	LP−solution
0

M1

1
2

2

1 3

43
M2

Final	schedule

pij 1 2 3

1 1 9 5

2 9 2 5

Theorem
Algorithm	is	a	2-approximation	algorithm	if	m is	a	constant.
Proof
Ratio:
Length	for	integer	jobs		≤	OPT
Length	for	fractional	jobs	≤	OPT à Total	length	≤	2OPT
Time:	??	 (next	slide)



R|.| Cmax     

Proof		Time?
Lemma
Any	extreme	LP-solution,	has	at	most	n+m			non-zero	variables.		
Proof	
• nm variables	
• nm + n + m constraints.
• In	extreme	LP-solution,	at	least	nm	constraints	are	tight	(=)	

(Known	from	Lin.	Algebra)
à At	least	nm	– (n+m)	variables		xij =	0
à At	most	(n+m)	variables	xij >0.

Corollary
Any	extreme	LP-solution,	has	at	most		m	fractional	jobs.
Proof For	each	fractional	job,	at	least	two	variables	are	strictly	positive.

n+m ≥ 2nf + ni
and	 n =   nf + ni   à nf ≤	m.

à Only	O(mm)	schedules	for	fractional	jobs.



R|.| Cmax   Improving the running time

Can	we	get	the	running	time	polynomial	in	m?

jobs machines Support	graph	:	edge	if	xij>0

From	lemma:	#	edges	≤	#	vertices	(n+m)	
This	even	holds	for	each	component,	
since	each	component	is	an	extreme	solution	for	the	
induced	LP.

à Each	component	is	a	tree or		a	tree	+	one	edge.

Lemma
For	fractional	jobs,	there	is	a	perfect	matching	with	the	
machines.

i

j



Bad	example:

0

M1

2

1

1M2

Optimal	LP−solution
pij 1
1 1

2 99

x11=	0.99

x21=	0.01
0.99

Algorithm
Step	1 Solve	LPà x, ZLP
Step	2	 Assign	j to	machine	i		if		xij=1.
Step	3 Assigning	fractional	jobs	in	an	optimal	way by	a	perfect	matching.

Length	of	schedule	is	at	most	OPT	+	Longest	fractional	job.

Idea:			Guess	OPT and	let	xij= 0 if pij > OPT.		

R|.| Cmax      Improving the running time



Guess	the	optimal	makespan	T.

Run	the	algorithm.	Then,	either	
1. it	returns	a	schedule	of	length	at	most	2T
2. or	it	finds	no	schedule.	But	then	we	know	that	T < OPT.

OPT	?

By	binary	search,	we	find	smallest	integer	T,	say T*,	for	which	the	LP	has	a	solution.

à Length	of	schedule	is	at	most					2T* ≤  2OPT.

T*T T

R|.| Cmax      Improving the running time



Results	Parallel	machines

7. P | pmtn | Cmax - McNaughton’s	wrap	arpund	rule	is	optimal.

8. P || Cmax - NP-hard.	
- List	scheduling	is	2-approximation.
- LPT	is	4/3-approximation.

9. R || ỦCj - In	P	since	reducible	to	the	min-cost	perfect	
matching.

10. Rm || Cmax - NP-hard.	
- LP	+	enumerating	schedules	gives	2-approx.	Running	time	
exponential	in	m

- Improvement	gives	a	running	time	which	is	polynomial	in	m.


