
What is a hard problem?

Complexity and
Complexity Classes

Today’s contents

10-02-2020 Combinatorial Optimization 2

Sources

This lecture includes hyperlinks to Wikipedia pages. These
are mostly subsidiary to the course: relevant information but
not necessarily what you may expect during the exam.

The bibliographic suggestions presented in the first lecture
adequately cover the course contents.

Today we address the ‘prologue’ (chapter 0) from Dasgupta,
in particular 0.3 the Big-O notation. Reading Chapter 1
(algorithms with numbers) is highly encouraged! We move
towards chapter 8: NP-complete problems, as summarized in
the course notes on Canvas.

10-02-2020 Combinatorial Optimization 3

What is a computer?

A computer is a model of deterministic computation. Formally we can think of a
computer as a Turing machine.

Turing machines are equivalent to machines that have an unlimited amount of
storage space for their computations.

However, Turing machines are not intended to model computers, but rather
they are intended to model computation itself.

Historically, computers, which compute only on their (fixed) internal storage,
were developed later than Alan Turing defined his machine.

Turing called his concept a machine because it could actually be built. An
algorithm (as we know them now) would be ‘hard-wired’ in the machine.

For us it is a formalism. Formalisms are needed to be able to proof theorems!

10-02-2020 Combinatorial Optimization 4

http://en.wikipedia.org/wiki/Turing_machine

You may have met Alan Turing already

10-02-2020 Combinatorial Optimization 5

https://www.wired.com/2012/06/lego-
turning-machine-how-to/

10-02-2020 Combinatorial Optimization 6

https://www.wired.com/2012/06/lego-turning-machine-how-to/

In fact…

we can replace the concept of a Turing machine by any
regular programming language running on a regular
computer.

The key concept is determinism: the program does
exactly what it is meant to do using basic steps of
computation.

Let us meet a simple problem posed on deterministic
programs and their input…

10-02-2020 Combinatorial Optimization 7

Halting problem

Question: Given the input data,
will Program P ever halt, or will
it run forever?

Approach: Try running it
▪ If it halts, we know the answer
▪ If it hasn’t halted yet, we don’t

know the answer

How long do we have to wait ?

Can we do better?

Program P

Data for

Program P

10-02-2020 Combinatorial Optimization 8

Is undecidable!

See http://en.Wikipedia.org/wiki/Halting_problem

Suppose that halt(p, i) returns true if the string p describes a program
that halts when given as input the string i, and returns false if p does not halt
on i.
If two programs are realizable on a Turing machine, then executing both of
them in sequence is also realizable, and so is executing one depending on a
condition. Construct a program trouble(s) that does the following:

▪ Call halt(s,s)
▪ If halt returned true, then loop forever.

Since all programs have string descriptions, there is a string t that represents
the program trouble. Does trouble halt when its input is t?
Consider both cases:

▪ If trouble(t) halts, it must be because halt(t, t) returned false, but that would
mean that trouble(t) should not have halted.

▪ If trouble(t) runs forever, it is either because halt itself runs forever, or because it
returned true. This would mean either that halt does not give an answer for every
program and input, or that trouble(t) should have halted.

10-02-2020 Combinatorial Optimization 9

http://en.wikipedia.org/wiki/Halting_problem
http://en.wikipedia.org/wiki/Turing_machine

I couldn’t find an algorithm,
because no such algorithm exists!

Dealing with hard problems

There are some problems that cannot be solved by
computers!

10-02-2020 Combinatorial Optimization 10

Analysis of Algorithms that DO halt

Estimate the running time.
Estimate the memory space required.

NOTE: Time and space depend on the input size.
NOTE: We need to define input size!

Let us first be clear about what a combinatorial
optimization problem is…

10-02-2020 Combinatorial Optimization 11

What is a Combinatorial Optimization
problem?

A combinatorial optimization problem consists in
defining the following concepts:
• A set of instances.
• For each instance a set of candidate solutions.
• For each instance, a set of valid solutions. These are

the candidate solutions with a certain property that
we look for.

Sometimes referring to a solution means optimal
solution because the problem in question defines
optimality (e.g. max flow on a network) as the desired
property. It should be obvious from the context.

10-02-2020 Combinatorial Optimization 12

The family of combinatorial problems

10-02-2020 Combinatorial Optimization 13

Example: the prefix averages

The very first example of the first lecture consisted of:
• Given a vector of 𝑛 numbers: the instance 𝑥
• Produce a new vector of 𝑛 numbers: the solution 𝑎

• Such that 𝑎𝑖 =
1

𝑖
σ𝑗≤𝑖 𝑥𝑖: the property

10-02-2020 Combinatorial Optimization 14

How do we solve a combinatorial
optimization problem?

A combinatorial optimization problem is solved by an
algorithm.

An algorithm is a set of computations that can be
represented in a Turing machine.

For us an algorithm is anything that we can implement
using a programming language on a deterministic (i.e. a
common) computer.

10-02-2020 Combinatorial Optimization 15

What is the size of an instance?

The size of an instance is the number of independent
parameters necessary to define the instance.

In the prefix averages example that is 𝑛 since you need
that many numbers to define and instance.

In the example of deciding if a graph admits an Eulerian
cycle the instance is a graph and its size is the number of
nodes 𝑛 and edges 𝑚. The size can therefore be given by
more than a single number. This is also the case for the
shortest path and for the max flow.

10-02-2020 Combinatorial Optimization 16

Effort of an algorithm

The effort of an algorithm is measured by the number of
elementary operations it requires when applied to a
given instance.

This number is expressed as a function of the size of the
instance.

Only the smallest order of the effort function matters.

10-02-2020 Combinatorial Optimization 17

What are elementary operations?

An elementary operation is a piece of computation
expressible in a programming language which takes some
constant amount of time.

Examples are:
• Evaluate an expression consisting of variable values,

constant values and arithmetic operations: s/i
• Dereference a variable: a[i]
• Assign the result of an expression to a variable:

a[i] = s/i

Calling a function as sin, sqrt, log, etc.. also counts as
elementary operation, while a function such as sort does
not. These differences may be subtle at first… but should be
clear after any course on data structures and algorithms.

10-02-2020 Combinatorial Optimization 18

Big-O

𝑓 𝑛 = 𝑂(𝑔 𝑛)

If for 𝑛 above some number 𝑘 a
constant 𝑐 exists for which:

𝑓 𝑛 ≤ 𝑐𝑔(𝑛)
10-02-2020 Combinatorial Optimization 19

Big-Omega

𝑓 𝑛 = Ω(𝑔 𝑛)

If :

𝑔 𝑛 = 𝑂(𝑓 𝑛)

10-02-2020 Combinatorial Optimization 20

Big-Theta

𝑓 𝑛 = Θ(𝑔 𝑛)

If :

𝑓 𝑛 = Ω(𝑔 𝑛)
and

𝑔 𝑛 = 𝑂(𝑓 𝑛)

10-02-2020 Combinatorial Optimization 21

Some Big-O examples from the definition

• 7𝑛 − 2 is 𝑂 𝑛
take 𝑐 = 7 and 𝑘 = 1.

• 3𝑛3 + 20𝑛2 + 5 is 𝑂 𝑛3

take 𝑐 = 4 and 𝑘 = 21.

• 3 log 𝑛 + 5 is 𝑂 log 𝑛
take 𝑐 = 8 and 𝑘 = 2.

10-02-2020 Combinatorial Optimization 22

Big-O rule of thumb

To simplify the running time estimation, for a function
𝑓(𝑛), we just ignore the constants and lower order
terms.

Example: 10𝑛3+ 4𝑛2 − 4𝑛 + 5 is 𝑂(𝑛3).

10-02-2020 Combinatorial Optimization 23

Big-O and Growth Rate

The Big-O notation gives an upper bound on the growth rate of a
function.

The statement “𝒇(𝒏) is 𝑶(𝒈(𝒏))” means that the growth rate of
𝒇(𝒏) is no more than the growth rate of 𝒈(𝒏).

We can use the Big-O notation to rank functions according to their
growth rate.

10-02-2020 Combinatorial Optimization 24

Common Growth Functions

• Constant  1
• Logarithmic  log n
• Linear  n
• Log Linear  n log n
• Quadratic  n2

• Cubic  n3

• Polynomial  nk

• Exponential  2n

• Factorial  n!
(aka super exponential, exhaustive, etc..)

2510-02-2020 Combinatorial Optimization

Growth Rates Compared

n=1 n=2 n=4 n=8 n=16 n=32

1 1 1 1 1 1 1

logn 0 1 2 3 4 5

n 1 2 4 8 16 32

nlogn 0 2 8 24 64 160

n2 1 4 16 64 256 1024

n3 1 8 64 512 4096 32768

2n 2 4 16 256 65536 4294967296

n! 1 2 24 40320 20.9T Don’t ask!

2610-02-2020 Combinatorial Optimization

Growth Rates Compared

n=1 n=2 n=4 n=8 n=16 n=32

1 1 1 1 1 1 1

logn 0 1 2 3 4 5

n 1 2 4 8 16 32

nlogn 0 2 8 24 64 160

n2 1 4 16 64 256 1024

n3 1 8 64 512 4096 32768

2n 2 4 16 256 65536 4294967296

n! 1 2 24 40320 20.9T Don’t ask!

2710-02-2020 Combinatorial Optimization

notes

Running time is not a property of the problem, is a
characteristic of algorithms and their implementation
details!

It is common to say ‘this problem can be solved in
𝑂(𝑓(𝑛))’ but it is not always obvious how, even if one
can easily think on a way to implement a solution
procedure.

As we will saw last week, a roughly described algorithm
leaves so many details to the implementation that the
factual runtime may change orders!

10-02-2020 Combinatorial Optimization 28

The most important question in
combinatorial optimization

Given a problem, can we find a solution with the desired
property in polynomial time?

All problems addressed last week belong to that
category.

Today we will meet other type of problems and learn
how to distinguish them.

10-02-2020 Combinatorial Optimization 29

Search problems

Remember that a combinatorial optimization problem
consists in defining the following concepts:
• A set of instances.
• For each instance a set of solutions.
• A subset of the solutions: those with a desired

property.

Now we need a new definition: our combinatorial
problem is a search problem if given an instance, a
solution and a property the verification that the solution
is valid and satisfies the property can be done in
polynomial time.

10-02-2020 Combinatorial Optimization 30

Complexity classes:
chapter 8 of Dasgupta

10-02-2020 Combinatorial Optimization 31

Definitions

NP is the class of all search problems.
P is the class of all NP problems that can be solved in
polynomial time.

NP-Complete are those problems in NP that are at least
as hard as any other problem in NP.

Notice how NP-hard exceeds beyond NP: the halting
problem is an example of an NP-hard problem that is not
in NP. We will explain that later.

10-02-2020 Combinatorial Optimization 32

At least as hard as…

A problem P is at least as hard as Q if P can be used to
efficiently solve Q.

Efficiency is measured in terms of the computational
effort required.

Efficient use of P to solve Q means that the number of
times one uses P to solve Q is bounded by a polynomial
and that the length of each instance solved by P is also
bound by a polynomial.

10-02-2020 Combinatorial Optimization 33

This leads to the notion of
polynomial reduction

Reduction amounts to solving a problem by (repeatedly)
creating instances of another problem which we know
how to solve.

The reduction is polynomial whenever the number and
size of the instances of the sub problem is polynomial on
the size of the original problem.

10-02-2020 Combinatorial Optimization 34

Examples of reduction

• The Ford-Fulkerson max flow method looks for an
‘augmenting path’ on each iteration.

• The (revised) simplex method looks for the non basic
variable with the lowest reduced cost.

NOTE: both examples are not polynomial! The first
became polynomial and led to the Edmonds-Karp-Dinitz
algorithm. The simplex algorithm is proven not to be
polynomial for each of the presently known pivot rules:
Examples exist leading to an exponential number of
iterations. Remains an open question whether a version
of the simplex method exists which is polynomial.

10-02-2020 Combinatorial Optimization 35

Transformations

If we find a reduction with length 1 then we call it a
transformation.

Example: the Linear Assignment Problem (also known as
bipartite matching) can be solved by transforming it into
a min cost flow problem. The LAP consists of: given a
square matrix 𝑐 of numbers 𝑐𝑖𝑗 assign each row 𝑖 once to

a unique column 𝑗 such that the sum of the
corresponding 𝑐𝑖𝑗 is minimal.

10-02-2020 Combinatorial Optimization 36

Question
Explain how the transformation of the
Linear Assignment problem to the min
cost flow problem works.

Size again…

We defined size independently of the magnitude of
numbers in the problem instance.

This was important when we met the Ford-Fulkerson
method: its effort depends on the capacities of the arcs.

In chapter 1 of the book Algorithms by Dasgupta we
notice that the running time of algorithms may depend
on how large numbers are!

One form of dependency is allowed while still placing
algorithms in P.

10-02-2020 Combinatorial Optimization 38

What if the actual symbols matter?

When the magnitude of the numbers matter (e.g.
RELPRIME, LP, etc.) then we need to measure the length
of the numeric representation.

Usually we adopt a binary representation of a number 𝑥
and take 𝑛 = log2𝑥

NOTE: for a comprehensive explanation about the
complexity of primality see
http://en.Wikipedia.org/wiki/Primality_test.

10-02-2020 Combinatorial Optimization 39

http://en.wikipedia.org/wiki/Primality_test

Let us recapitulate…

NP
P
NP-complete or NPC
NP-hard or NPH

10-02-2020 Combinatorial Optimization 40

The class NP

The class NP is defined in terms of yes answers.

A recognition problem is in NP whenever a yes answer can be
checked in polynomial time.

10-02-2020 Combinatorial Optimization 41

The class P

A problem is in the class P when an yes answer can be found in
polynomial time.

10-02-2020 Combinatorial Optimization 42

NOTE

The statements

-verifiable in polynomial time by a deterministic Turing
machine

and

-solvable in polynomial time by a non-deterministic Turing
machine

mean exactly the same thing! That is actually the meaning of
NP: Non-deterministic Polynomial.

10-02-2020 Combinatorial Optimization 43

The class NP-Complete

This may seem the most mysterious class.

In fact is quite simple: a problem is in NPC if

▪ It is in NP.

▪ All other problems in NP polynomially reduce to our
problem.

10-02-2020 Combinatorial Optimization 44

A slightly more accurate picture…

10-02-2020 Combinatorial Optimization 45

The previous picture is correct if…

The previous picture assumes that 𝑃 ≠ 𝑁𝑃.

Despite being still unsolved (an you may win one million
dollar by solving it, see
https://en.Wikipedia.org/wiki/Millennium_Prize_Proble
ms) there is at least strong evidence that this is the case.

How do we prove that NPC has at least one element?

10-02-2020 Combinatorial Optimization 46

https://en.wikipedia.org/wiki/Millennium_Prize_Problems

Boolean satisfiability

Suppose a Boolean expression in conjunctive normal form.
Example:

(~x | y | z) & (x | ~y | z) & (y | z) & (~x | ~y | ~z)

The Boolean satisfiability problem amounts to finding
truth values for the variables which make the expression
become true.

Let us try…

10-02-2020 Combinatorial Optimization 47

x y z ~x|y|z x|~y|z y|z ~x|~y|~z

FALSE FALSE FALSE TRUE TRUE FALSE TRUE FALSE

Remember NP

A problem is in NP if it can be decided by a non-
deterministic Turing machine in polynomial time.

Another way to read the above definition:

A problem is in NP if provided a candidate solution this can
be verified in polynomial time by a deterministic algorithm
in a regular computer.

10-02-2020 Combinatorial Optimization 48

SAT is clearly in NP

Provided a truth assignment one can evaluate each clause
in time proportional to the number of literals in the clause
and hence all clauses in time proportional to the number
of clauses.

10-02-2020 Combinatorial Optimization 49

Suppose now a slightly different
question…

Given a Boolean expression in conjunctive normal form,
just like in SAT, suppose now that your problem asks: is it
unsatisfiable?

Is this problem in NP?

In this case what is ‘easy’ to check is the ‘no’ answer!

10-02-2020 Combinatorial Optimization 50

It is in coNP!

There are many more complexity classes. These go
beyond this course, but may be addressed at for
instance a Master level course on combinatorial
optimization.

10-02-2020 Combinatorial Optimization 51

Is SAT in P?

Not known!

But is at least as hard as any problem in NP and therefore
it is NPC!

10-02-2020 Combinatorial Optimization 52

How do we lay the first egg?

All problems in NP polinomially reduce to SAT!

Proven (independently) by Stephen Cook (US, 1971) and
Leonid Levin (USSR, 1973).

Idea of the proof:
Suppose that a given problem in NP can be solved by the
nondeterministic Turing machine M.
M is polynomially transformed into a Boolean expression
B.
The existence of an accepting computation for M is proven
equivalent to satisfying B.

10-02-2020 Combinatorial Optimization 53

consequence

If the Boolean satisfiability problem could be solved in
polynomial time by a deterministic Turing machine, then
all problems in NP could be solved in polynomial time by a
deterministic Turing machine as well, and so the
complexity class NP would be equal to the complexity
class P.

10-02-2020 Combinatorial Optimization 54

Born from the first egg:
Karp’s 21 problems as difficult as SAT
In 1972, one year after Cook’s theorem, Karp published the following proofs via
transformation to SAT:

* 0-1 INTEGER PROGRAMMING
* CLIQUE (see also independent set problem)

o SET PACKING
o VERTEX COVER

+ SET COVERING
+ FEEDBACK ARC SET
+ FEEDBACK NODE SET
+ DIRECTED HAMILTONIAN CIRCUIT

UNDIRECTED HAMILTONIAN CIRCUIT
* 3-SAT

o CHROMATIC NUMBER
+ CLIQUE COVER
+ EXACT COVER

3-dimensional MATCHING
STEINER TREE
HITTING SET
KNAPSACK

* JOB SEQUENCING
* PARTITION

o MAX-CUT
See also http://en.Wikipedia.org/wiki/Karp%27s_21_NP-complete_problems

10-02-2020 Combinatorial Optimization 55

http://en.wikipedia.org/wiki/Karp%27s_21_NP-complete_problems

Many more followed!

There are now hundreds or maybe
thousands of distinct and relevant
combinatorial problems known to be NPC.

A classical first reference is the book:

Computers and Intractability: A Guide to
the Theory of NP-Completeness
(Series of Books in the Mathematical
Sciences)
by Michael R. Garey and David S. Johnson

340 pages
W. H. Freeman publishers
(January 15, 1979)
ISBN-10: 0716710455
ISBN-13: 978-0716710455

10-02-2020 Combinatorial Optimization 56

I couldn’t find an efficient algorithm,
but neither could all these other smart people.

Dealing with hard problems

Aiming at solving some problems is still doomed to take
too long.

10-02-2020 Combinatorial Optimization 57

Another consequence

If you find an algorithm you can code on an existing
computer able to solve any problem known to be NP
complete then you are entitled to win one million dollar.

Another way to win the same million is to prove that such
an algorithm does not exist!

Let us look into this matters from the perspective of a
well-known computer game…

10-02-2020 Combinatorial Optimization 58

All problems in NP reduce to mine
sweeper!

http://web.mat.bham.ac.uk/R.W.Kaye/minesw/ordmsw.htm

10-02-2020 Combinatorial Optimization 59

http://web.mat.bham.ac.uk/R.W.Kaye/minesw/ordmsw.htm

Question
Show that the halting problem is
NP-hard by showing that 3SAT is
reducible to it!

Goal: transfer all n disks from peg A to peg C
Rules:

▪ move one disk at a time
▪ never place larger disk above smaller one

Recursive solution:
▪ transfer n - 1 disks from A to B
▪ move largest disk from A to C
▪ transfer n - 1 disks from B to C

Total number of moves:
▪ T(n) = 2T(n - 1) + 1

Towers of Hanoi

10-02-2020 Combinatorial Optimization 61

Towers of Hanoi/2

Recurrence:
T(n) = 2 T(n - 1) + 1
T(1) = 1
Solution by repeated substitution:
T(n) = 2 (2 T(n - 2) + 1) + 1 =

= 4 T(n - 2) + 2 + 1 =
= 4 (2 T(n - 3) + 1) + 2 + 1 =
= 8 T(n - 3) + 4 + 2 + 1 = ...
= 2i T(n - i) + 2i-1 +2i-2 +...+21 +20

The expansion stops with n - i = 1
T(n) = 2n – 1 + 2n – 2 + 2n – 3 + ... + 21 + 20

10-02-2020 Combinatorial Optimization 62

Towers of Hanoi/3

This is a geometric series so that we have
T(n) = 2n - 1 = O(2n)

The running time of this algorithm is exponential
(kn).
Is provable a lower bound!
Good or bad news?

▪ the Tibetan priests were confronted with a tower problem of
64 rings...

▪ Assuming the priests move one ring per second, it would
take ~585 billion years to complete the process!

10-02-2020 Combinatorial Optimization 63

Where is the
Towers of Hanoi problem?

10-02-2020 Combinatorial Optimization 64

Answer: is outside that picture!

Is it in NP?
Is it NP-hard?
Expensive computation is not the same as hard!!!

10-02-2020 Combinatorial Optimization 65

Back to P

A problem is in P if it can be decided in polynomial time by
a deterministic Turing machine.

Another way to read the above definition:

A problem is in P if a solution can either be found or
proven non-existent in polynomial time by a deterministic
algorithm in a regular computer.

10-02-2020 Combinatorial Optimization 66

EULER is in P

The decision ‘is this graph Eulerian’ can be taken in
polynomial time by testing if it is connected and
computing the degree of each vertex and counting the
number of vertices with odd degree. This can be done in
time proportional to the number of edges in the graph.

10-02-2020 Combinatorial Optimization 67

Question What is the complexity of deciding if a
graph is connected?

Chess: knight’s moves

10-02-2020 Combinatorial Optimization 69

Is it possible to devise a knight’s tour
visiting every square once?

10-02-2020 Combinatorial Optimization 70

Is it possible to devise a knight’s tour
visiting every square once?

10-02-2020 Combinatorial Optimization 71

What about a regular chessboard?

10-02-2020 Combinatorial Optimization 72

Possible moves are edges of a graph

10-02-2020 Combinatorial Optimization 73

Rudrata, Xth century

10-02-2020 Combinatorial Optimization 74

Rudrata and Hamilthon

In the XIXth century Sir Rowan Hamilthon gained interest
in the same problem as addressed by Rudrata almost
thousand years before.

Nowadays you may find the problem named after
Hamilthon more often than after Rudrata.

10-02-2020 Combinatorial Optimization 75

Visit all nodes: the Hamiltonian journey

10-02-2020 Combinatorial Optimization 76

3

2
1

0

6
5

4

Visit all nodes: the Hamiltonian journey

10-02-2020 Combinatorial Optimization 77

3

2
1

0

6
5

4

Visit all nodes: the Hamiltonian journey

10-02-2020 Combinatorial Optimization 78

3

2
1

0

6
5

4

a difficult decision

Much harder than Euler!

No efficient certificate known!

Suppose that one would be told the vertices in the correct
sequence… then the ‘yes’ version of the certificate becomes
easy!

We say that this problem is efficiently solved by a ‘non
deterministic’ algorithm.

Such algorithms are unfortunately not implementable on
‘our’ computers…

10-02-2020 Combinatorial Optimization 79

Optimization?

Suppose now that whether such a cycle exists is
irrelevant (for instance when the graph is complete).

We need now to find the best (the shortest for instance)
of such cycles.

This is an optimization problem!

10-02-2020 Combinatorial Optimization 80

Question

Show that if you could solve the
optimization version then you could
solve the decision problem!

You were just told that the decision
problem is difficult… what does that
mean for the difficulty of the
optimization problem?

3

2

1

7

6

5

4

10-02-2020 Combinatorial Optimization 82

3

2

1

7

6

5

4

10-02-2020 Combinatorial Optimization 83

3

2

1

7

6

5

4

10-02-2020 Combinatorial Optimization 84

3

2

1

7

6

5

4

10-02-2020 Combinatorial Optimization 85

Take 24978 cities in Sweden…

Give the distances
among them to the
best experts in the
world
Add 96 dual
processor
computers
Wait for about one
year (about 92
years of sequential
computer power)

10-02-2020 Combinatorial Optimization 86

Take 24978 cities in Sweden…

Give the distances
among them to the
best experts in the
world
Add 96 dual
processor
computers
Wait for about one
year (about 92
years of sequential
computer power)

10-02-2020 Combinatorial Optimization 87

I could not find an efficient algorithm…

10-02-2020 Combinatorial Optimization 88

But so far no clever person in the world
did!

10-02-2020 Combinatorial Optimization 89

Travelling Salesman Problem

9010-02-2020 Combinatorial Optimization

TSP: mathematical program

9110-02-2020 Combinatorial Optimization

The linear assignment solution

34

5

1 2

9210-02-2020 Combinatorial Optimization

Eliminate sub-cycles

!?
9310-02-2020 Combinatorial Optimization

Repeat from A(4)

!!
9410-02-2020 Combinatorial Optimization

Branch & Bound
(first usage Little et al, 1963)

9510-02-2020 Combinatorial Optimization

Question

Does Branch & Bound prove that the
Linear Assignment is as difficult as the
Traveling Salesman Problem?

Or, same question in other words, does
TSP efficiently reduce to LAP?

note

The first two assignments of this week’s tutorials use TSP
and Rudrata (or Hamilthon) Cycle to illustrate the
relation between search, decision and optimization.

10-02-2020 Combinatorial Optimization 97

Disclaimer on efficiency…

Suppose that a problem can efficiently be solved: is that
always practical?

10-02-2020 Combinatorial Optimization 98

10-02-2020 Combinatorial Optimization 99

10-02-2020 Combinatorial Optimization 100

3

2

1

7

6

5

4

10-02-2020 Combinatorial Optimization 101

n n x n Path per path All from or all to

10 100 0:01:40 0:00:20

50 2500 0:41:40 0:01:40

100 10000 2:46:40 0:03:20

1000 1000000 11 days 13:46:40 0:33:20

5000 25000000 289 days 8:26:40 2:46:40

10-02-2020 Combinatorial Optimization 102

All about implementations…

Careful considerations about the type of graphs and
about the mathematics behind the algorithm of Dykstra
have led to huge improvements!

10-02-2020 Combinatorial Optimization 103

We see roads as being of different types

10-02-2020 Combinatorial Optimization 104

For Dijkstra all arcs are of the same type

10-02-2020 Combinatorial Optimization 105

Makes sense to take highways on long
paths

10-02-2020 Combinatorial Optimization 106

Administrative classification

10-02-2020 Combinatorial Optimization 107

Rigorous classification

10-02-2020 Combinatorial Optimization 108

Optimal queries become sparse!

10-02-2020 Combinatorial Optimization 109

Effort almost independent of the length

10-02-2020 Combinatorial Optimization 110

Dominik Schultes (1980 - …)

Size of the question Conventional HNR

From A to B 2 to 30 seconds 0.01 seconds

100x100 10+ minutes 1 second

1000x1000 2+ hours 20 seconds

5000x5000 20+ hours 2 minutes

10-02-2020 Combinatorial Optimization 111

Above Google on SciAm50 in 2008

The Fastest Way to Get There
Novel ways of calculating routes and predicting traffic jams
promise less time in the car
By Peter Sergo
Providing directions instantly online has until recently meant
that navigational mapping programs, such as MapQuest and
Google Maps, often simplify the problem by not considering
every possible route to a destination. Scientists at the
University of Karlsruhe in Germany have designed a
computer application that can quickly calculate the most
expedient of all possible driving routes without the need for
excessive computation.
Dominik Schultes, one of the project's scientists, designed
the program around a simple premise: driving somewhere
usually requires crossing major intersections that are sparsely
interconnected. Figuring the best route occurs by
precomputing the connections between a starting point (or
destination) and its nearest major intersections and between
all locations where major routes cross each other's paths—
so-called transit nodes.

10-02-2020 Combinatorial Optimization 112

http://sams.scientificamerican.com/author/peter-sergo

Amsterdam

10-02-2020 Combinatorial Optimization 113

Amsterdam’s HNR

10-02-2020 Combinatorial Optimization 114

Amsterdam’s administrative

10-02-2020 Combinatorial Optimization 115

LCS

Longest common subsequence
▪ x = “sariempiolcewe”

▪ y = “westigmupsalrte”

Solution: Proceed from the end of the strings and
▪ If xm = yn append symbol to LCS(xm-1, yn-1)
▪ If xm  yn

> Skip last symbol from x or
> last symbol from y
> Decide which symbol to skip by comparing

LCS(xm, yn-1) and LCS(xm-1, yn)

10-02-2020 Combinatorial Optimization 116

LCS Implementation

int lcsRec(int i, int j) {
if (i==0 || j==0) return 0;
else if (x[i] == y[j])

return lcsRec(i-1,j-1) + 1;
else

return max(lcsRec(i-1,j),lcsRec(i,j-1));
}

Recurrence for time complexity:

T(2n) = T(2n-2)+1 if x[n]=y[n]

T(2n) = 2T(2n-1) if x[n]!=y[n]

T(2n) = 1 if n=0

T(2n) = 2T(2n-1)

= 2(2T(2n-2))

= 4T(2n-2)

= 4(2T(2n-3))

= 8T(2n-3)

= ...

= 2iT(2n-i)

= 22n = 4n

10-02-2020 Combinatorial Optimization 117

Notes about LCS

Previous implementation solves
the Evaluation version of LCS
(compute the optimal value)

Question: extend it to solve the
optimization version (find the
solution)

What about the Recognition
version?

Question: Is it in NP?

Question: Is it hard?

Consider this as a cliffhanger for
next week!

10-02-2020 Combinatorial Optimization 118

