
What is a hard problem?

Complexity and 
Complexity Classes



Today’s contents
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Sources

This lecture includes hyperlinks to Wikipedia pages. These 
are mostly subsidiary to the course: relevant information but 
not necessarily what you may expect during the exam.

The bibliographic suggestions presented in the first lecture 
adequately cover the course contents. 

Today we address the ‘prologue’ (chapter 0) from Dasgupta, 
in particular 0.3 the Big-O notation. Reading Chapter 1 
(algorithms with numbers) is highly encouraged! We move 
towards chapter 8: NP-complete problems, as summarized in 
the course notes on Canvas.  
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What is a computer?

A computer is a model of deterministic computation. Formally we can think of a 
computer as a Turing machine.

Turing machines are equivalent to machines that have an unlimited amount of 
storage space for their computations. 

However, Turing machines are not intended to model computers, but rather 
they are intended to model computation itself. 

Historically, computers, which compute only on their (fixed) internal storage, 
were developed later than Alan Turing defined his machine.

Turing called his concept a machine because it could actually be built. An 
algorithm (as we know them now) would be ‘hard-wired’ in the machine. 

For us it is a formalism. Formalisms are needed to be able to proof theorems!
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You may have met Alan Turing already
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https://www.wired.com/2012/06/lego-
turning-machine-how-to/
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In fact…

we can replace the concept of a Turing machine by any 
regular programming language running on a regular 
computer.

The key concept is determinism: the program does 
exactly what it is meant to do using basic steps of 
computation.

Let us meet a simple problem posed on deterministic 
programs and their input…
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Halting problem

Question: Given the input data, 
will Program P ever halt, or will 
it run forever?

Approach: Try running it
▪ If it halts, we know the answer
▪ If it hasn’t halted yet, we don’t

know the answer

How long do we have to wait ?

Can we do better?

Program P

Data for

Program P
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Is undecidable!

See http://en.Wikipedia.org/wiki/Halting_problem

Suppose that halt(p, i) returns true if the string p describes a program 
that halts when given as input the string i, and returns false if p does not halt 
on i. 
If two programs are realizable on a Turing machine, then executing both of 
them in sequence is also realizable, and so is executing one depending on a 
condition. Construct a program trouble(s) that does the following:

▪ Call halt(s,s)
▪ If halt returned true, then loop forever. 

Since all programs have string descriptions, there is a string t that represents 
the program trouble. Does trouble halt when its input is t?
Consider both cases:

▪ If trouble(t) halts, it must be because halt(t, t) returned false, but that would 
mean that trouble(t) should not have halted. 

▪ If trouble(t) runs forever, it is either because halt itself runs forever, or because it 
returned true. This would mean either that halt does not give an answer for every 
program and input, or that trouble(t) should have halted. 
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I couldn’t find an algorithm, 
because no such algorithm exists!

Dealing with hard problems

There are some problems that cannot be solved by 
computers!
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Analysis of Algorithms that DO halt 

Estimate the running time.
Estimate the memory space required.

NOTE: Time and space depend on the input size.
NOTE: We need to define input size! 

Let us first be clear about what a combinatorial 
optimization problem is…
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What is a Combinatorial Optimization 
problem?

A combinatorial optimization problem consists in 
defining the following concepts:
• A set of instances.
• For each instance a set of candidate solutions.
• For each instance, a set of valid solutions. These are 

the candidate solutions with a certain property that 
we look for.

Sometimes referring to a solution means optimal 
solution because the problem in question defines 
optimality (e.g. max flow on a network) as the desired 
property. It should be obvious from the context. 

10-02-2020 Combinatorial Optimization 12



The family of combinatorial problems
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Example: the prefix averages

The very first example of the first lecture consisted of:
• Given a vector of 𝑛 numbers: the instance 𝑥
• Produce a new vector of 𝑛 numbers: the solution 𝑎

• Such that 𝑎𝑖 =
1

𝑖
σ𝑗≤𝑖 𝑥𝑖: the property
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How do we solve a combinatorial 
optimization problem?

A combinatorial optimization problem is solved by an 
algorithm. 

An algorithm is a set of computations that can be 
represented in a Turing machine.

For us an algorithm is anything that we can implement 
using a programming language on a deterministic (i.e. a 
common) computer. 
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What is the size of an instance?

The size of an instance is the number of independent 
parameters necessary to define the instance. 

In the prefix averages example that is 𝑛 since you need 
that many numbers to define and instance. 

In the example of deciding if a graph admits an Eulerian 
cycle the instance is a graph and its size is the number of 
nodes 𝑛 and edges 𝑚. The size can therefore be given by 
more than a single number. This is also the case for the 
shortest path and for the max flow. 
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Effort of an algorithm

The effort of an algorithm is measured by the number of 
elementary operations it requires when applied to a 
given instance. 

This number is expressed as a function of the size of the 
instance. 

Only the smallest order of the effort function matters. 
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What are elementary operations?

An elementary operation is a piece of computation 
expressible in a programming language which takes some 
constant amount of time.

Examples are:
• Evaluate an expression consisting of variable values, 

constant values and arithmetic operations: s/i
• Dereference a variable: a[i]
• Assign the result of an expression to a variable: 

a[i] = s/i

Calling a function as sin, sqrt, log, etc.. also counts as 
elementary operation, while a function such as sort does 
not. These differences may be subtle at first… but should be 
clear after any course on data structures and algorithms. 
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Big-O

𝑓 𝑛 = 𝑂(𝑔 𝑛 )

If for 𝑛 above some number 𝑘 a 
constant 𝑐 exists for which:

𝑓 𝑛 ≤ 𝑐𝑔(𝑛)
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Big-Omega

𝑓 𝑛 = Ω(𝑔 𝑛 )

If :

𝑔 𝑛 = 𝑂(𝑓 𝑛 )
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Big-Theta

𝑓 𝑛 = Θ(𝑔 𝑛 )

If :

𝑓 𝑛 = Ω(𝑔 𝑛 )
and

𝑔 𝑛 = 𝑂(𝑓 𝑛 )
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Some Big-O examples from the definition

• 7𝑛 − 2 is 𝑂 𝑛
take 𝑐 = 7 and 𝑘 = 1.

• 3𝑛3 + 20𝑛2 + 5 is 𝑂 𝑛3

take 𝑐 = 4 and 𝑘 = 21.

• 3 log 𝑛 + 5 is 𝑂 log 𝑛
take 𝑐 = 8 and 𝑘 = 2.
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Big-O rule of thumb

To simplify the running time estimation, for a function 
𝑓(𝑛), we just ignore the constants and lower order 
terms.

Example: 10𝑛3+ 4𝑛2 − 4𝑛 + 5 is 𝑂(𝑛3).
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Big-O and Growth Rate

The Big-O notation gives an upper bound on the growth rate of a 
function.

The statement “𝒇(𝒏) is 𝑶(𝒈(𝒏))” means that the growth rate of 
𝒇(𝒏) is no more than the growth rate of 𝒈(𝒏).

We can use the Big-O notation to rank functions according to their 
growth rate.

10-02-2020 Combinatorial Optimization 24



Common Growth Functions

• Constant  1
• Logarithmic  log n
• Linear  n
• Log Linear  n log n
• Quadratic  n2

• Cubic  n3

• Polynomial  nk

• Exponential  2n

• Factorial  n! 
(aka super exponential, exhaustive, etc..)
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Growth Rates Compared

n=1 n=2 n=4 n=8 n=16 n=32

1 1 1 1 1 1 1

logn 0 1 2 3 4 5

n 1 2 4 8 16 32

nlogn 0 2 8 24 64 160

n2 1 4 16 64 256 1024

n3 1 8 64 512 4096 32768

2n 2 4 16 256 65536 4294967296

n! 1 2 24 40320 20.9T Don’t ask!
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notes

Running time is not a property of the problem, is a 
characteristic of algorithms and their implementation 
details!

It is common to say ‘this problem can be solved in 
𝑂(𝑓(𝑛))’ but it is not always obvious how, even if one 
can easily think on a way to implement a solution 
procedure.

As we will saw last week, a roughly described algorithm 
leaves so many details to the implementation that the 
factual runtime may change orders!
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The most important question in 
combinatorial optimization

Given a problem, can we find a solution with the desired 
property in polynomial time?

All problems addressed last week belong to that 
category. 

Today we will meet other type of problems and learn 
how to distinguish them. 
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Search problems

Remember that a combinatorial optimization problem 
consists in defining the following concepts:
• A set of instances.
• For each instance a set of solutions.
• A subset of the solutions: those with a desired 

property.

Now we need a new definition: our combinatorial 
problem is a search problem if given an instance, a 
solution and a property the verification that the solution 
is valid and satisfies the property can be done in 
polynomial time. 
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Complexity classes: 
chapter 8 of Dasgupta
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Definitions 

NP is the class of all search problems.
P is the class of all NP problems that can be solved in 
polynomial time.

NP-Complete are those problems in NP that are at least 
as hard as any other problem in NP.

Notice how NP-hard exceeds beyond NP: the halting 
problem is an example of an NP-hard problem that is not 
in NP. We will explain that later. 
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At least as hard as…

A problem P is at least as hard as Q if P can be used to 
efficiently solve Q.

Efficiency is measured in terms of the computational 
effort required.

Efficient use of P to solve Q means that the number of 
times one uses P to solve Q is bounded by a polynomial 
and that the length of each instance solved by P is also 
bound by a polynomial.  
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This leads to the notion of 
polynomial reduction

Reduction amounts to solving a problem by (repeatedly) 
creating instances of another problem which we know 
how to solve.

The reduction is polynomial whenever the number and 
size of the instances of the sub problem is polynomial on 
the size of the original problem.
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Examples of reduction

• The Ford-Fulkerson max flow method looks for an 
‘augmenting path’ on each iteration.

• The (revised) simplex method looks for the non basic 
variable with the lowest reduced cost.

NOTE: both examples are not polynomial! The first 
became polynomial and led to the  Edmonds-Karp-Dinitz 
algorithm. The simplex algorithm is proven not to be 
polynomial for each of the presently known pivot rules: 
Examples exist leading to an exponential number of 
iterations. Remains an open question whether a version 
of the simplex method exists which is polynomial. 
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Transformations

If we find a reduction with length 1 then we call it a 
transformation.

Example: the Linear Assignment Problem (also known as 
bipartite matching) can be solved by transforming it into 
a min cost flow problem. The LAP consists of: given a 
square matrix 𝑐 of numbers 𝑐𝑖𝑗 assign each row 𝑖 once to 

a unique column 𝑗 such that the sum of the 
corresponding 𝑐𝑖𝑗 is minimal. 
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Question
Explain how the transformation of the 
Linear Assignment problem to the min 
cost flow problem works. 



Size again…

We defined size independently of the magnitude of 
numbers in the problem instance.

This was important when we met the Ford-Fulkerson 
method: its effort depends on the capacities of the arcs. 

In chapter 1 of the book Algorithms by Dasgupta we 
notice that the running time of algorithms may depend 
on how large numbers are!

One form of dependency is allowed while still placing 
algorithms in P.
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What if the actual symbols matter?

When the magnitude of the numbers matter (e.g. 
RELPRIME, LP, etc.) then we need to measure the length 
of the numeric representation.

Usually we adopt a binary representation of a number 𝑥
and take 𝑛 = log2𝑥

NOTE: for a comprehensive explanation about the 
complexity of primality see 
http://en.Wikipedia.org/wiki/Primality_test.
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Let us recapitulate…

NP
P
NP-complete or NPC
NP-hard or NPH
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The class NP

The class NP is defined in terms of yes answers.

A recognition problem is in NP whenever a yes answer can be 
checked in polynomial time.
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The class P

A problem is in the class P when an yes answer can be found in 
polynomial time.
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NOTE

The statements

-verifiable in polynomial time by a deterministic Turing 
machine

and

-solvable in polynomial time by a non-deterministic Turing 
machine

mean exactly the same thing! That is actually the meaning of 
NP: Non-deterministic Polynomial. 
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The class NP-Complete

This may seem the most mysterious class.

In fact is quite simple: a problem is in NPC if 

▪ It is in NP.

▪ All other problems in NP polynomially reduce to our 
problem.
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A slightly more accurate picture…
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The previous picture is correct if…

The previous picture assumes that 𝑃 ≠ 𝑁𝑃. 

Despite being still unsolved (an you may win one million 
dollar by solving it, see 
https://en.Wikipedia.org/wiki/Millennium_Prize_Proble
ms) there is at least strong evidence that this is the case.

How do we prove that NPC has at least one element?   
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Boolean satisfiability

Suppose a Boolean expression in conjunctive normal form.
Example:

(~x | y | z ) & ( x | ~y | z ) & ( y | z ) & ( ~x | ~y | ~z)

The Boolean satisfiability problem amounts to finding 
truth values for the variables which make the expression 
become true.

Let us try…
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x y z ~x|y|z x|~y|z y|z ~x|~y|~z

FALSE FALSE FALSE TRUE TRUE FALSE TRUE FALSE



Remember NP

A problem is in NP if it can be decided by a non-
deterministic Turing machine in polynomial time. 

Another way to read the above definition:

A problem is in NP if provided a candidate solution this can 
be verified in polynomial time by a deterministic algorithm 
in a regular computer.
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SAT is clearly in NP

Provided a truth assignment one can evaluate each clause 
in time proportional to the number of literals in the clause 
and hence all clauses in time proportional to the number 
of clauses. 
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Suppose now a slightly different 
question…

Given a Boolean expression in conjunctive normal form, 
just like in SAT, suppose now that your problem asks: is it 
unsatisfiable? 

Is this problem in NP?

In this case what is ‘easy’ to check is the ‘no’ answer!
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It is in coNP!

There are many more complexity classes. These go 
beyond this course, but may be addressed at for 
instance a Master level course on combinatorial 
optimization. 
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Is SAT in P?

Not known!

But is at least as hard as any problem in NP and therefore 
it is NPC!
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How do we lay the first egg?

All problems in NP polinomially reduce to SAT!

Proven (independently) by  Stephen Cook (US, 1971) and 
Leonid Levin (USSR, 1973).

Idea of the proof:
Suppose that a given problem in NP can be solved by the 
nondeterministic Turing machine M.
M is polynomially transformed into a Boolean expression 
B.
The existence of an accepting computation for M is proven 
equivalent to satisfying B. 
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consequence

If the Boolean satisfiability problem could be solved in 
polynomial time by a deterministic Turing machine, then 
all problems in NP could be solved in polynomial time by a 
deterministic Turing machine as well, and so the 
complexity class NP would be equal to the complexity 
class P.
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Born from the first egg: 
Karp’s 21 problems as difficult as SAT
In 1972, one year after Cook’s theorem, Karp published the following proofs via 
transformation to SAT:

* 0-1 INTEGER PROGRAMMING
* CLIQUE (see also independent set problem)

o SET PACKING
o VERTEX COVER

+ SET COVERING
+ FEEDBACK ARC SET
+ FEEDBACK NODE SET
+ DIRECTED HAMILTONIAN CIRCUIT

# UNDIRECTED HAMILTONIAN CIRCUIT
* 3-SAT

o CHROMATIC NUMBER
+ CLIQUE COVER
+ EXACT COVER

# 3-dimensional MATCHING
# STEINER TREE
# HITTING SET
# KNAPSACK

* JOB SEQUENCING
* PARTITION

o MAX-CUT
See also http://en.Wikipedia.org/wiki/Karp%27s_21_NP-complete_problems
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Many more followed!

There are now hundreds or maybe 
thousands of distinct and relevant 
combinatorial problems known to be NPC. 

A classical first reference is the book:

Computers and Intractability: A Guide to 
the Theory of NP-Completeness 
(Series of Books in the Mathematical 
Sciences) 
by Michael R. Garey and  David S. Johnson 

340 pages
W. H. Freeman publishers 
(January 15, 1979)
ISBN-10: 0716710455
ISBN-13: 978-0716710455
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I couldn’t find an efficient algorithm, 
but neither could all these other smart people.

Dealing with hard problems

Aiming at solving some problems is still doomed to take 
too long.  

10-02-2020 Combinatorial Optimization 57



Another consequence

If you find an algorithm you can code on an existing 
computer able to solve any problem known to be NP 
complete then you are entitled to win one million dollar. 

Another way to win the same million is to prove that such 
an algorithm does not exist!

Let us look into this matters from the perspective of a 
well-known computer game…
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All problems in NP reduce to mine 
sweeper!

http://web.mat.bham.ac.uk/R.W.Kaye/minesw/ordmsw.htm
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Question
Show that the halting problem is 
NP-hard by showing that 3SAT is 
reducible to it!



Goal: transfer all n disks from peg A to peg C
Rules:

▪ move one disk at a time
▪ never place larger disk above smaller one

Recursive solution:
▪ transfer n - 1 disks from A to B
▪ move largest disk from A to C
▪ transfer n - 1 disks from B to C

Total number of moves:
▪ T(n) = 2T(n - 1) + 1

Towers of Hanoi

10-02-2020 Combinatorial Optimization 61



Towers of Hanoi/2

Recurrence:
T(n) = 2 T(n - 1) + 1
T(1) = 1
Solution by repeated substitution:
T(n) = 2 (2 T(n - 2) + 1) + 1 =

= 4 T(n - 2) + 2 + 1 =
= 4 (2 T(n - 3) + 1) + 2 + 1 =
= 8 T(n - 3) + 4 + 2 + 1 = ...
= 2i T(n - i) + 2i-1 +2i-2 +...+21 +20

The expansion stops with n - i = 1
T(n) = 2n – 1 + 2n – 2 + 2n – 3 + ... + 21 + 20
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Towers of Hanoi/3

This is a geometric series so that we have
T(n) = 2n - 1 = O(2n)

The running time of this algorithm is exponential
(kn).
Is provable a lower bound!
Good or bad news?

▪ the Tibetan priests were confronted with a tower problem of 
64 rings...

▪ Assuming the priests move one ring per second, it would 
take ~585 billion years to complete the process!
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Where is the 
Towers of Hanoi problem?
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Answer: is outside that picture!

Is it in NP?
Is it NP-hard?
Expensive computation is not the same as hard!!!
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Back to P

A problem is in P if it can be decided in polynomial time by 
a deterministic Turing machine.  

Another way to read the above definition:

A problem is in P if a solution can either be found or 
proven non-existent in polynomial time by a deterministic 
algorithm in a regular computer.
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EULER is in P

The decision ‘is this graph Eulerian’ can be taken in 
polynomial time by testing if it is connected and 
computing the degree of each vertex and counting the 
number of vertices with odd degree. This can be done in 
time proportional to the number of edges in the graph. 
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Question What is the complexity of deciding if a 
graph is connected?



Chess: knight’s moves
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Is it possible to devise a knight’s tour 
visiting every square once?
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Is it possible to devise a knight’s tour 
visiting every square once?
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What about a regular chessboard?
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Possible moves are edges of a graph
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Rudrata, Xth century 
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Rudrata and Hamilthon

In the XIXth century Sir Rowan Hamilthon gained interest 
in the same problem as addressed by Rudrata almost 
thousand years before. 

Nowadays you may find the problem named after 
Hamilthon more often than after Rudrata. 
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Visit all nodes: the Hamiltonian journey 
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Visit all nodes: the Hamiltonian journey 
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a difficult decision

Much harder than Euler!

No efficient certificate known!

Suppose that one would be told the vertices in the correct 
sequence… then the ‘yes’ version of the certificate becomes 
easy!

We say that this problem is efficiently solved by a ‘non 
deterministic’ algorithm.

Such algorithms are unfortunately not implementable on 
‘our’ computers…
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Optimization?

Suppose now that whether such a cycle exists is 
irrelevant (for instance when the graph is complete).

We need now to find the best (the shortest for instance) 
of such cycles.

This is an optimization problem!
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Question

Show that if you could solve the 
optimization version then you could 
solve the decision problem!

You were just told that the decision 
problem is difficult… what does that 
mean for the difficulty of the 
optimization problem?
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Take 24978 cities in Sweden…

Give the distances 
among them to the 
best experts in the 
world
Add 96 dual 
processor 
computers
Wait for about one 
year (about 92 
years of sequential 
computer power)
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I could not find an efficient algorithm…
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But so far no clever person in the world 
did!
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Travelling Salesman Problem
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TSP: mathematical program
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The linear assignment solution

34

5

1 2
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Eliminate sub-cycles

!?
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Repeat from A(4)

!!
9410-02-2020 Combinatorial Optimization



Branch & Bound 
(first usage Little et al, 1963)
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Question

Does Branch & Bound prove that the 
Linear Assignment is as difficult as the 
Traveling Salesman Problem?

Or, same question in other words, does 
TSP efficiently reduce to LAP?



note

The first two assignments of this week’s tutorials use TSP 
and Rudrata (or Hamilthon) Cycle to illustrate the 
relation between search, decision and optimization. 

10-02-2020 Combinatorial Optimization 97



Disclaimer on efficiency…

Suppose that a problem can efficiently be solved: is that 
always practical?

10-02-2020 Combinatorial Optimization 98



10-02-2020 Combinatorial Optimization 99



10-02-2020 Combinatorial Optimization 100



3

2

1

7

6

5

4

10-02-2020 Combinatorial Optimization 101



n n x n Path per path All from or all to

10 100 0:01:40 0:00:20

50 2500 0:41:40 0:01:40

100 10000 2:46:40 0:03:20

1000 1000000 11 days 13:46:40 0:33:20

5000 25000000 289 days 8:26:40 2:46:40
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All about implementations…

Careful considerations about the type of graphs and 
about the mathematics behind the algorithm of Dykstra 
have led to huge improvements!
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We see roads as being of different types
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For Dijkstra all arcs are of the same type
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Makes sense to take highways on long 
paths 
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Administrative classification
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Rigorous classification
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Optimal queries become sparse!
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Effort almost independent of the length
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Dominik Schultes (1980 - … )

Size of the question Conventional HNR

From A to B 2 to 30 seconds 0.01 seconds

100x100 10+ minutes 1 second

1000x1000 2+ hours 20 seconds

5000x5000 20+ hours 2 minutes

10-02-2020 Combinatorial Optimization 111



Above Google on SciAm50 in 2008

The Fastest Way to Get There
Novel ways of calculating routes and predicting traffic jams 
promise less time in the car
By Peter Sergo
Providing directions instantly online has until recently meant 
that navigational mapping programs, such as MapQuest and 
Google Maps, often simplify the problem by not considering 
every possible route to a destination. Scientists at the 
University of Karlsruhe in Germany have designed a 
computer application that can quickly calculate the most 
expedient of all possible driving routes without the need for 
excessive computation.
Dominik Schultes, one of the project's scientists, designed 
the program around a simple premise: driving somewhere 
usually requires crossing major intersections that are sparsely 
interconnected. Figuring the best route occurs by 
precomputing the connections between a starting point (or 
destination) and its nearest major intersections and between 
all locations where major routes cross each other's paths—
so-called transit nodes. 
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Amsterdam
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Amsterdam’s HNR
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Amsterdam’s administrative
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LCS

Longest common subsequence
▪ x = “sariempiolcewe”

▪ y = “westigmupsalrte”

Solution: Proceed from the end of the strings and
▪ If xm = yn append symbol to LCS(xm-1, yn-1)
▪ If xm  yn

> Skip last symbol from x or 
> last symbol from y
> Decide which symbol to skip by comparing 

LCS(xm, yn-1) and LCS(xm-1, yn)
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LCS Implementation

int lcsRec(int i, int j) {
if (i==0 || j==0) return 0;
else if (x[i] == y[j])

return lcsRec(i-1,j-1) + 1;
else

return max(lcsRec(i-1,j),lcsRec(i,j-1));
}

Recurrence for time complexity:

T(2n) = T(2n-2)+1 if x[n]=y[n]

T(2n) = 2T(2n-1)   if x[n]!=y[n]

T(2n) = 1              if n=0

T(2n) = 2T(2n-1)

= 2(2T(2n-2))

= 4T(2n-2)

= 4(2T(2n-3))

= 8T(2n-3)

= ...

= 2iT(2n-i)

= 22n = 4n
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Notes about LCS

Previous implementation solves 
the Evaluation version of LCS 
(compute the optimal value)

Question: extend it to solve the 
optimization version (find the 
solution) 

What about the Recognition 
version?

Question: Is it in NP?

Question: Is it hard?

Consider this as a cliffhanger for 
next week!
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