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Joaquim Gromicho

Professor of Applied Optimization in Operations 
Research at the SEB.

Scientific & education Officer at ORTEC, an 
international company specialized in mathematical 
optimization. 

Editor in Chief of STAtOR, the ‘glossy’ of the 
Netherlands Society of Statistics and Operations 
Research.

Member of the coordinating committee of the EURO 
working group on the Practice of OR.
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Today’s course

Exposition of the structure of the course and the grading.

All this, and more, can be found on the course manual (on canvas).

Description of the bibliography.

Introduction to combinatorial optimization with the focus on theorems, proofs 
and algorithms.

Today’s course considers only graph problems, therefore a gentle introduction 
to graphs is also given.

Important learning objectives:
• Proving optimality of algorithms and analyzing their computational effort. 
• Understanding that small differences in related algorithms influence their 

computational effort.
• Understand that implementation details influence computational effort.

03-02-2020 Combinatorial Optimization 4



First part: theory in period 4 
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Days theme lecture tutorial

February 3 and 6 Introduction, graphs, paths and trees, flows Gromicho Sitters

February 10 and 13 Complexity classes and reductions Gromicho Sitters

February 17 and 20 Dynamic Programming Gromicho Gromicho

February 24 and 27 Scheduling Sitters Sitters

March 2 and 5 Approximation algorithms Sitters Sitters

March 9 and 12 Material relevant for the case Gromicho Sitters



Course bibliography: lectures

Course notes by René Sitters. These are all relevant! Will be 
available per week. 

Book ‘Algorithms’ by Dasgupta, Papadimitriou, and Vazirani 
ISBN-13: 978-0073523408, last free version can be found on 
Blackboard

Book ‘Scheduling Theory, Algorithms, and Systems’ by 
Pinedo, ISBN-13: 978-0130281388, instructions how to 
access online via the VU library on blackboard. 

Material relevant for the case. Will be available toward the 
end of the first block.
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The main book

Algorithms

Sanjoy Dasgupta, Christos Papadimitriou & 
Umesh Vazirani

McGraw-Hill Education 

336 pages
September 13, 2006

ISBN:  0073523402 

Price: usually less than € 50

Was long time free online, still easy to find
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Optional: a classical 
book

Combinatorial Optimization: Algorithms and 
Complexity

Christos H. Papadimitriou 

& 

Kenneth Steiglitz

Dover Publications 

512 pages
July 7, 1998

ISBN:  0486402584 

Price: usually less than € 20
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Period 4
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The exam is at the end of period 4!

March 27, 12:15-14:30

The roster wrongly shows an exam on June 2

Days theme lecture tutorial

February 3 and 6 Introduction, graphs, paths and trees, flows Gromicho Sitters

February 10 and 13 Complexity classes and reductions Gromicho Sitters

February 17 and 20 Dynamic Programming Gromicho Gromicho

February 24 and 27 Scheduling Sitters Sitters

March 2 and 5 Approximation algorithms Sitters Sitters

March 9 and 12 Material relevant for the case Gromicho Sitters



Block 5

Days theme lecturer type

March 31 Introducing the case Gromicho 
Sitters

Lecture

April 7 Q&A Gromicho Tutorial

April 14 Advise Gromicho Tutorial

April 21 Advise Gromicho Tutorial

April 28 Advise Sitters Tutorial

May 5

May 12 Presentations and 
discussion

Gromicho
Sitters

Assessment
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Grades: exam + case

Minimum 5 for each part. 
The resit is only for the exam!

Case is compulsory!!!
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Algorithms by Dasgupta et al

Chapter 0, Running time

Sections 4.1 - 4.4 Dijkstra's algorithm

Sections 5.1.1 - 5.1.3 Minimum Spanning Tree

Chapter 6 Dynamic Programming 

Sections 7.1-7.4 Linear programming and Flows

Chapter 8 NP-completeness

Sections 9.2 - 9.3
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Course bibliography: tutorials

The answers to all exercises will be provided.

Some extra material will be used and placed on 
blackboard.

Tutorial exercises are part of the exam material.

Questions from the slides are intended to motivate 
discussion and reflection.
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Today’s course

Main source: notes om Graphs by René Sitters

Additionally, from the book Algorithms:
• Preliminaries from chapter 0
• Paths in graphs including Dijkstra in chapter 4

03-02-2020 Combinatorial Optimization 14



What is combinatorial optimization?

Combinatorial optimization is ‘just’ to choose the best 
(optimum) from a finite number of alternatives.

Seems easier than it really is… since finite does not mean 
attainable.

It is common to confuse combinatorial optimization with 
integer programming, especially with binary variables.

A stronger relation exists between combinatorial 
optimization and combinatorial decision problems: does 
a given instance have a specific type of solution?
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The focus of the course

Highlighting some areas such as graphs, networks, 
routing, packing, scheduling, …

Identifying important problems in those areas.
Distinguishing ‘easy’ from ‘difficult’ problems.

Be able to prove that a ‘difficult’ problem is indeed 
difficult.

Presenting mathematical models for these problems.
Studying the important properties of these models.
Explaining solution procedures for each problem, 
emphasizing on computational efficiency.
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How difficult is a combinatorial 
optimization problem?

We will learn that combinatorial optimization problems 
may differ much in the effort needed to solve them.

We will understand that there are mainly two types of 
combinatorial optimization problems: 
- Those that we can solve efficiently 
- Those that are as hard to solve as the hardest 

combinatorial optimization problems
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Typical structure of a ‘topic’

A problem description
A proof of hardness in case the problem is indeed hard
Algorithms, including analysis of the effort
• Exact (optimal)
• Heuristic (sometimes approximation) if the problem 

is hard
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Effort of algorithms

Running time is not a property of the problem, is a 
characteristic of algorithms and their implementation 
details!

Effort is measured by counting ‘elementary operations’ 
as a function of the ‘input size’.

These concepts will be defined later in detail, important 
for now is understanding that differences between 
computers or languages should not matter. 

We start with a simple example.
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Computing Prefix Averages

Let us illustrate computational effort 
analysis with two algorithms for 
prefix averages

The 𝑖𝑡ℎ prefix average of an array 𝑿
is average of the first 𝒊 elements of 
𝑿:

𝑨𝒊 =
𝑿1 + 𝑿2 + … + 𝑿𝑖

𝑖

Computing the array 𝑨 of prefix 
averages of another array 𝑿 has 
applications to financial analysis
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Prefix Averages version 1

The following implementation computes prefix averages by applying 
the definition

def PrefixAverages1( X ):
# Input array X of n integers
# Output array A of prefix averages of X

# operations
n = len(X) # O(1)
A = [0]*n                # O(n)
for i in range(n): # O(n)

s = 0 # O(n)
for j in range(i+1): # O(1+2+3+ ... + n) <- highest

s = s + X[j] # O(1+2+3+ ... + n) <- highest
A[i] = s / (i+1) # O(n)

return A                 # O(1)
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Prefix Averages version 2

The following implementation computes prefix averages in less time 
by keeping a running sum

def PrefixAverages2( X ):
# Input array X of n integers
# Output array A of prefix averages of X

# operations
n = len(X) # O(1)
A = [0]*n                # O(n)
s = 0 # O(1)
for i in range(n): # O(n)

s = s + X[i] # O(n) <- highest
A[i] = s / (i+1) # O(n)

return A                 # O(1)
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How does the effort change with 𝑛?

The running time of 
PrefixAverages1 is 
dominated by
1 + 2 + … + 𝒏

The sum of the first 𝒏

integers is 
𝒏 𝒏 + 1

𝟐

The running time of 
PrefixAverages2 is 
dominated by 𝑛
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Order of

We say that a function 𝑓 is of order of a 
function 𝑔 and write:

𝑓 𝑛 = 𝑂(𝑔 𝑛 )

if there is a constant c and a number k such that

𝑓 𝑛 ≤ 𝑐𝑔 𝑛 for all 𝑛 ≥ 𝑘.
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Prefix averages: conclusion

Understanding that 
PrefixAverages1 is 𝑂 𝑛2 and 
PrefixAverages2 is 𝑂(𝑛) should 
become more or less 
‘automatic’.

Concluding that 
PrefixAverages2 is much more 
efficient and scales much 
better with the growth of the 
input should then be 
immediate.
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Effort is an implementation issue!

It is common to say 

this problem can be solved in 𝑂(𝑔(𝑛))

for some function 𝑔, but it is not always obvious how to 
achieve the specified effort. 

As we just saw, a roughly described algorithm leaves so many 
details to the implementation that the factual runtime may 
change the nature of the function 𝑔!

We will see this again at the end of today’s course when 
studying max flow algorithms.
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Complementary material 
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What is this course all about?

Models
Theorems
Proofs
Methods
Algorithms
Implementations
Computational effort
Computational complexity
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Start with ‘decision’ problems

Is this number prime?
Can I reach that location from this one using the 
available roads?
Can I finish my tasks in less than a given amount of time?
Can I draw this graph without lifting the pen and without 
retracing lines?
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Let us illustrate a few things

We will now see how a theorem, and in particular its
proof, may relate to:
- Answering a decision problem: yes or no
- Understanding the effort of making the decision
- Leading to an algorithm to find an yes answer if it 

exists
- Determining the effort of finding a solution
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Do you know this puzzle?
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Answer is yes
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What if you get the following cases?
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What if you get the following cases?
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What if you get the following cases?
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What if you get the following cases?
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What if you get the following cases?
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Let us go back in time…
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The 7 bridges of Königsberg
in the XVIIIth century
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A scheme: simplifies experimentation
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A scheme: simplifies experimentation
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Higher abstraction: a model!
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Our first model: a graph (see notes!)

• Some points: nodes or vertices.
• Some lines connecting pairs of points: edges or arcs 

(in case they can only be traversed in one way).
• The number of edges at each node is called the 

degree of that node.
• In case of arcs then we distinguish in-degree and out-

degree.
• Two nodes are connected if one can move from the 

first to the second node using edges or arcs and 
maybe intermediate nodes.
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The first graph theorem of Euler (1736)
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A connected (multi)graph has 

an  Eulerian path if and only 

if the number of nodes with 

odd degree is 0 or 2. 

May the number be 0 then 

the path is a cycle: it starts 

and finishes on the same 

node.



Remarks

The theorem gives a certificate for a graph to be 
Eulerian.

This certificate is very easy (and in fact efficient) to 
check.

In itself, the certificate does not disclose nor requires an 
actual solution to the problem.
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A theorem must be proven
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What did the proof give us?

Some magic: we can now say that it holds for all graphs 
although we may not claim to have seen all graphs!

A present: an algorithm! Note that the algorithm 
revealed by the (constructive) proof is not provided by 
the theorem itself.

What do you think about the effort needed to apply this 
algorithm?
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question

Consider a connected (multi)graph with 
𝑛 nodes and 𝑚 edges.

What is the effort required to check if 
this graph is Eulerian?

In case the graph is Eulerian: what is 
the effort required to find a Eulerian 
path or cycle?



And what about the seven bridges?
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Not possible!
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Option 1: remove at least one bridge
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Happened Königsberg in World War II
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Nowadays it is possible!
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Option 2: add bridges!
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Chinese Postman Problem:

What is the minimum number of edges 

we need to add to make the graph 

Eulerian? 

First studied by Chinese scientist, Kwan 

Mei-Ko in 1960

Efficient algorithm by Jack Edmonds, 1965



note

Although we are still discussing decision problems we 
just met an optimization problem!

This optimization problem minimizes the effort needed 
to make a given graph become Eulerian.

You will see it again later and learn its name: a matching 
problem.

Although these matching problems can be efficiently 
solved on general graphs some graphs called bipartite 
allow for an easier algorithm.
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What else do we get form graphs?
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Reality
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Simplification 
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Abstraction
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Roadmaps are large graphs
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This is an optimization problem!

There are usually (many!) alternative ways to go from 
our origin to destination.

We want to find the ‘best’ defined as fastest or shortest

Hopefully not by computing and comparing all the 
possibilities!
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question
can you estimate the number of 
alternative paths between two 
nodes for some types of graphs?
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question

Can you list the assumptions one needs 
to make about the given graph in order 
for Dijkstra’s algorithm to guarantee 
finding the optimal solution?

Can you estimate the effort needed to 
apply this algorithm on a graph with 𝑛
nodes and 𝑚 arcs?



notes

It is clearly important that on each round of the algorithm 
(we will call these iterations) exactly one node becomes 
definitely labeled.

Therefore the number of iterations does not exceed the 
number of nodes.

We need now to estimate the effort of each iteration!

There are many answers depending on the data structures 
used! Please pay attention to this!

The design of efficient algorithms is a challenge that goes 
beyond the proof of correctness

03-02-2020 Combinatorial Optimization 92



Let us meet 
the Greedy 
paradigm
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Greedy algorithms

A greedy algorithm extends its wealth (the solution 
being constructed) by taking the step with highest 
immediate gain.

Despite being well-known that greedy algorithms are 
often sub-optimal, today we see one case where they 
are optimal!
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Greedy can be optimal!

In fact, there is a whole collection of optimization 
problems defined in clean mathematical terms for which 
greedy is optimal: the matroids (for another course).

The most famous and easy to explain example is the so-
called Minimal Spanning Tree.
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Problem: laying cables

Central office
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Expensive: dedicated connection

Central office
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A better solution

Central office
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or or or

Some Spanning Trees from Graph AGraph A

Spanning Trees

A tree is a connected graph without cycles.

A spanning tree of a graph is tree that contains all the 
vertices of the graph.

A graph may have many spanning trees.
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All 16 of its Spanning TreesComplete Graph
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question
Can you give an upper bound on 
the number of spanning trees of a 
given graph?



5

7

2

1

3

4

2

1

3

Complete Graph Minimum Spanning Tree

Minimum Spanning Trees

The Minimum Spanning Tree for a given graph is the 
Spanning Tree of minimum cost for that graph.
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notes

Finding the minimum spanning tree of a connected 
undirected graph is very efficient.

A greedy algorithm (i.e. an algorithm expanding a partial 
solution in the best way as perceived at that moment) is 
optimal in this case.

Several different algorithms may have different 
efficiencies though…
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On the book Algorithms

First section in chapter 5 on Greedy algorithms
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Algorithms for Minimum Spanning Tree

Kruskal's Algorithm

Prim's Algorithm
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Kruskal's Algorithm

This algorithm creates a forest of trees. Initially the 
forest consists of n single node trees (and no edges). At 
each step, we add one edge (the cheapest one) so that it 
joins two trees together. If it were to form a cycle, it 
would simply link two nodes that were already part of a 
single connected tree, so that this edge would not be 
needed.
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Kruskal's Algorithm

The steps are:

1. The forest is constructed - with each node in a separate tree.
2. The edges are placed in a priority queue.
3. Until we've added 𝑛 − 1 edges,

1. Extract the cheapest edge from the queue,
2. If it forms a cycle, reject it,
3. Else add it to the forest. Adding it to the forest will join two 

trees together.

Every step will have joined two trees in the forest together, so that 
at the end, there will only be one tree.
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makes the algorithm  easier to visualize)
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question

Can you estimate the running time of 
Kruskal’s algorithm?

Can you also elaborate on the 
assumptions you make about graph 
representation and data structures 
used?



Prim's Algorithm

This algorithm starts with one node. It then, one by one, 
adds a node that is unconnected to the new graph to the 
new graph, each time selecting the node whose 
connecting edge has the smallest weight out of the 
available nodes’ connecting edges.
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Prim's Algorithm

The steps are:

1. The new graph is constructed - with one node from the old graph.
2. While new graph has fewer than n nodes,

1. Find the node from the old graph with the smallest connecting edge to 
the new graph,

2. Add it to the new graph

Every step will have joined one node, so that at the end we will have one graph 
with all the nodes and it will be a minimum spanning tree of the original graph.
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question

Can you estimate the running time of 
Prim’s algorithm?

Can you also elaborate on the 
assumptions you make about graph 
representation and data structures 
used?



maximum 
flow

Ford-Fulkerson and 
extensions
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Flow problems

Ford-Fulkerson method for maximum flow (MaxFlow).

Shortest augmenting path algorithm for MaxFlow.

Some generalizations of the MaxFlow problem.

The minimum cost flow problem. 
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Max flow

Given a network directed from a source vertex to a 
target vertex with a maximum capacity on each arc 
determine the highest value of a flow from the source to 
the target which respects the capacities and is preserved 
at each intermediate vertex.
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Method of Ford and Fulkerson

Start with a flow of zero.

At each iteration consider the residual graph composed of 
• The original arcs with capacity equal to the difference between the original 

capacity and the flow on the arc (the residual capacity) if this value is 
positive, otherwise the arc is eliminated. 

• Arcs opposite to the original ones with capacity equal to the flow passing 
on the corresponding arc if a (positive) flow passes on the arc.

Determine a path from source to target on the residual graph, if it exists, and 
update the flow with the minimum capacity along the path (increase flow for 
original arcs, decrease for opposite arcs). Update the residual graph. May such 
a path not exist, terminate, the flow is maximum. 

Following
https://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm

we call this a method instead of an algorithm because it lacks detailing an 
important step: determining a positive flow.
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Ford-Fulkerson example
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Residual graph 



0

s

2

3

4

5 t10

10

9

8

4

10

1062

10

0

0

0 2 10

8

2

s

2

3

4

5 t

4

2

10

810

2

10 7

106

X

6
6

6

X

X

8X

Flow value = 10

𝐷 = (𝑉, 𝐴)

Ford-Fulkerson example

03-02-2020 Combinatorial Optimization 147

Residual graph

𝐷𝑓 = (𝑉, 𝐴𝑓)
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Residual graph 

𝐷𝑓 = (𝑉, 𝐴𝑓)
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Residual graph 

𝐷𝑓 = (𝑉, 𝐴𝑓)
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Residual graph 

𝐷𝑓 = (𝑉, 𝐴𝑓)
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Residual graph

𝐷𝑓 = (𝑉, 𝐴𝑓)



Ford-Fulkerson:    Analysis.

Theorem: Min cut   =  Max flow ,    and FF algorithm finds them.

Proof:   Clearly, Min cut   ≥   Max flow.  (*)

Other direction:

When algorithm terminates, it gives a cut C and a flow F for which 

value(C)  =  value(F)  →

min cut  ≤  value(C)  =  value(F)  ≤  max flow  (**)

(*) + (**) → min cut  =  value(C)  =  value(F)  =  max flow  
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Ford-Fulkerson:    Analysis.

Corollary:

If all capacities are integer then there is integer maximum 

flow.

Proof:

If all capacities are integer then the flow found by FF is 

integer.
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Ford-Fulkerson:    Analysis.

🤔 Does FF algorithm always terminate?  

It depends on the capacities:

Integer capacities: 

▪ Yes, since the flow value increases by at least 1 in every iteration.

Rational capacities:

▪ Yes, since the flow value increases by at least some small epsilon in every iteration.

Real valued capacities: (Note: not realistic in practice)

▪ See a nonterminating example in 

https://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm

▪ But it will terminate with a small modification of the algorithm. (See next slides.)
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Ford-Fulkerson:    Analysis.

🤔 How about the running time?

𝑂(𝑛) per iteration, but how many iterations can we have?

# iterations may be as large as max flow value!

Is there an algorithm for which the running time only depends on the size 

of the graph, and not on the capacities? Yes! Next slides. 

1000

ts

10001000

1000

1

Example: 2000 iterations if the algorithm always chooses the arc in the middle.

03-02-2020 Combinatorial Optimization 155



Shortest augmenting path algorithm

By Edmonds-Karp-Dinitz  (1970)

Algorithm:

Apply the FF algorithm but always choose the path with the 

minimum number of edges.

Let n be the number of vertices and let m be the number of edges. 

Theorem

Shortest augmenting path algorithm takes 𝑂(𝑛𝑚) iterations.
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Shortest augmenting path, example

Network 1st Residual graphFind augmenting path

Update Layer

Iteration 1
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Shortest augmenting path

1st Residual Find augmenting path 2nd residual

Update Layer

Iteration 2
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Shortest augmenting path

2nd Residual Find augmenting path 3rd residual

Update Layer

Iteration 3
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3rd residual Find augmenting path 4th residual

Shortest augmenting path

Update Layer

Iteration 4
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Shortest augmenting path

4th residual

Maximum flow

No more path from 𝑠 to 𝑡.

Max flow found  →
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Analysis  (not for exam)

Let 𝒅(𝒔, 𝒖) be the depth of vertex 𝑢 in the residual graph (i.e., the number of 

arcs on the shortest path between 𝑠 and 𝑢).

augment

0

1

2

3

re-layer

Example. Points 𝑓 and 𝑡 move down

Lemma 1 For any point 𝑢, the depth  𝑑(𝑠, 𝑢) never decreases.

Proof

• Deleting an arc will not decrease 𝑑(𝑠, 𝑢)

• Adding an arc may only decrease 𝑑(𝑠, 𝑢) if the arc is forward (down). However, we never add a forward arc.
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Analysis (not for exam)

Call an arc (𝑢, 𝑣) in the residual graph critical if it has the minimum capacity on 

the augmenting path.

Lemma 2  𝑑(𝑠, 𝑢) increases between two critical moments of arc (𝑢, 𝑣). 

Proof  (Hint: check this proof for arc (𝑎, 𝑓) in the example)

If arc (𝑢, 𝑣) is critical then 𝑣 is below 𝑢 and the arc will be removed from the 

residual graph. (See (𝑎, 𝑓) in iteration 1). 

Arc (𝑢, 𝑣) will only return in the residual when arc (𝑣, 𝑢) is on the augmenting 

path in some iteration. 

But then 𝑢 must be below 𝑣. Since 𝑣 did not went up, point 𝑢 must have moved 

down. (See (𝑎, 𝑓) in iteration 4). 
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Theorem

Shortest augmenting path algorithm takes 𝑂(𝑛𝑚) iterations.

Proof

By Lemma 2, each arc is critical only 𝑂(𝑛) times (since the 

depth of 𝑣 is less than 𝑛 and 𝑣 goes down between two critical 

moments of (𝑢, 𝑣) ).

Further, there is at least one critical arc in each iteration.

→ There are no more than 𝑂(𝑛𝑚) iterations.

Analysis (not for exam)
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Generalizations of the maximum flow 
problem

A polynomial time algorithm for the following versions of the max-flow 
problem follows by reducing each version to the original form of the 
max-flow problem. The concept of polynomial time reduction will be 
explained next week. 

a) The network has many sources and many sinks.

b) The network is undirected.

c) The nodes as well as the arcs have capacities.

d) The network is undirected and the nodes have capacities

e) There are lower bounds (and no upper bounds) on the flow through 
each arc. 
(Goal :Find min flow)
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(a) Add two vertices and make these the new source and sink. Add an arc from 𝑠 to each 𝑠𝑖 and 
an arc from each 𝑡𝑖 to 𝑡.

s1

s2

s3

s4

t1

t2

tS

infinite capacity

(b) Replace each edge by two arcs. Give each arc the capacity of the edge.

capacity c(e)
both arcs capacity c(e)

Generalizations of max flow
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a) The network has many sources and many sinks.
b) The network is undirected



(c) Split each node in two nodes and add an arc.

capacity 𝑏(𝑣) capacity 𝑏(𝑣)

(d)  Do both operations (b) and (c).

capacity 𝑏(𝑣) capacity 𝑏(𝑣)

c) The nodes as well as the arcs have capacities.
d) The network is undirected and the nodes have capacities.

Generalizations of max flow
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e) There are lower bounds (and no upper bounds) on the flow through each arc.
Goal: Find min flow 

Generalizations of max flow
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Algorithm: Step 1: First find a feasible flow (= easy)
Step 2: Iteratively, reduce along flow reducing paths.

s t
[1][0]

[3]

[1] [3]

s t

s t
[1][0]

[3]

[1] [3]

3

3

2

2

Feasible flow of value 6

Residual graph:

Numbers are upper bounds. No number means no 

(or infinite) upper bound. 

Add flow of value 2 over the path. 

s t
[1][0]

[3]

[1] [3]

3 1

2

1 3

New (and minimum) flow.
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4

1 2

5

32
2

2

1 1

2

1

capacity

cost per unit flow

Example: 

Sending 2 units over the path 𝑠, 𝑎, 𝑡 costs  2･4+2･5=18.

Is this the cheapest flow of value 2? 

a

b

Problem: 

Given the network with costs and capacities and a flow value 𝑣, we need 

to find an 𝑠 − 𝑡 flow of value 𝑣 of minimum cost.
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4

1 2

5

32
2

2

1 1

2

1

capacity

cost per unit flow

Algorithm:

Step 1: Find a feasible flow of value v (for example by FF). Construct residual graph (negative of the cost 

for reverse arcs) 

Step 2: While there is a negative-cost cycle in residual graph:

Add flow over the cycle.

Update the residual graph.

How to find?

e.g. Bellman Ford algorithm.

(Not in this course)



Min cost flow

Example: Find a min cost flow of value 2.

ts
2

2

1 1
2

1

2

1

ts

4

1 2

5

32
2

2

1 1

2

1

Initial flow of value 2.

Cost = 2･4+2･5=18

Given network. 

ts

- 4

1 2

- 5

3
2

2

1 1

2

1

2

1st residual graph 

Is there a negative cycle?
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ts

- 4

1 2

- 5

3
2

2

1 1

2

1

ts
2

2

1 1
2

1

1

1

Network with the updated flow.

Cost is reduced by 1. New cost=17.

2

1st residual graph.

Negative cycle of cost: -5+2+2= -1

Min residual capacity is 1.Send 1 unit along this cycle. 

ts

- 4

1 -2

- 53
2

2

1 1

1

1

-2

2nd residual graph

1 5

Is there a negative cycle?

Min cost flow
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ts
2

2

1 1
2

1

1

1

Network with the updated flow.

Cost is reduced by 5. New cost=12.

2nd residual graph.

Negative cycle of cost: 1-2-4= -5

Min residual capacity is 1. Send 1 unit along this cycle. 

ts

- 4

1 -2

- 53
2

2

1 1

1

1

-2

1 5

Is there a negative cycle?

No. -> The flow has minimum cost.

ts

4

1

-2

- 5
3

1

1

1 1

1

1

2

1 5

3rd residual graph

- 4

1

-1
1

Min cost flow
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Min cost flow:

Theorem:

A flow is a minimum cost flow (of given value v)

→

Residual graph has no negative-cost cycles 

Corollary:

The algorithm always returns the minimum cost flow.
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