
Combinatorial Optimization

Dr. R.A. Sitters (SBE) - coordinator

Prof. dr. J.A.S. Gromicho (SBE)

meetings outside the course times are on appointment only

Rene Sitters

Dr. René Sitters is the coordinator of the
Combinatorial Optimization course.

Specialized in Combinatorial Optimization
problems: algorithms and complexity.

Winner of:

• Gijs de Leve prize (for the best PhD
dissertation on the mathematics of OR)

• Veni Innovational Research NWO

03-02-2020Combinatorial Optimization 2

Joaquim Gromicho

Professor of Applied Optimization in Operations
Research at the SEB.

Scientific & education Officer at ORTEC, an
international company specialized in mathematical
optimization.

Editor in Chief of STAtOR, the ‘glossy’ of the
Netherlands Society of Statistics and Operations
Research.

Member of the coordinating committee of the EURO
working group on the Practice of OR.

03-02-2020Combinatorial Optimization 3

Today’s course

Exposition of the structure of the course and the grading.

All this, and more, can be found on the course manual (on canvas).

Description of the bibliography.

Introduction to combinatorial optimization with the focus on theorems, proofs
and algorithms.

Today’s course considers only graph problems, therefore a gentle introduction
to graphs is also given.

Important learning objectives:
• Proving optimality of algorithms and analyzing their computational effort.
• Understanding that small differences in related algorithms influence their

computational effort.
• Understand that implementation details influence computational effort.

03-02-2020 Combinatorial Optimization 4

First part: theory in period 4

03-02-2020 Combinatorial Optimization 5

Days theme lecture tutorial

February 3 and 6 Introduction, graphs, paths and trees, flows Gromicho Sitters

February 10 and 13 Complexity classes and reductions Gromicho Sitters

February 17 and 20 Dynamic Programming Gromicho Gromicho

February 24 and 27 Scheduling Sitters Sitters

March 2 and 5 Approximation algorithms Sitters Sitters

March 9 and 12 Material relevant for the case Gromicho Sitters

Course bibliography: lectures

Course notes by René Sitters. These are all relevant! Will be
available per week.

Book ‘Algorithms’ by Dasgupta, Papadimitriou, and Vazirani
ISBN-13: 978-0073523408, last free version can be found on
Blackboard

Book ‘Scheduling Theory, Algorithms, and Systems’ by
Pinedo, ISBN-13: 978-0130281388, instructions how to
access online via the VU library on blackboard.

Material relevant for the case. Will be available toward the
end of the first block.

03-02-2020 Combinatorial Optimization 6

The main book

Algorithms

Sanjoy Dasgupta, Christos Papadimitriou &
Umesh Vazirani

McGraw-Hill Education

336 pages
September 13, 2006

ISBN: 0073523402

Price: usually less than € 50

Was long time free online, still easy to find

03-02-2020Combinatorial Optimization 7

Optional: a classical
book

Combinatorial Optimization: Algorithms and
Complexity

Christos H. Papadimitriou

&

Kenneth Steiglitz

Dover Publications

512 pages
July 7, 1998

ISBN: 0486402584

Price: usually less than € 20

03-02-2020Combinatorial Optimization 8

Period 4

03-02-2020 Combinatorial Optimization 9

The exam is at the end of period 4!

March 27, 12:15-14:30

The roster wrongly shows an exam on June 2

Days theme lecture tutorial

February 3 and 6 Introduction, graphs, paths and trees, flows Gromicho Sitters

February 10 and 13 Complexity classes and reductions Gromicho Sitters

February 17 and 20 Dynamic Programming Gromicho Gromicho

February 24 and 27 Scheduling Sitters Sitters

March 2 and 5 Approximation algorithms Sitters Sitters

March 9 and 12 Material relevant for the case Gromicho Sitters

Block 5

Days theme lecturer type

March 31 Introducing the case Gromicho
Sitters

Lecture

April 7 Q&A Gromicho Tutorial

April 14 Advise Gromicho Tutorial

April 21 Advise Gromicho Tutorial

April 28 Advise Sitters Tutorial

May 5

May 12 Presentations and
discussion

Gromicho
Sitters

Assessment

03-02-2020 Combinatorial Optimization 10

Grades: exam + case

Minimum 5 for each part.
The resit is only for the exam!

Case is compulsory!!!

03-02-2020 Combinatorial Optimization 11

Algorithms by Dasgupta et al

Chapter 0, Running time

Sections 4.1 - 4.4 Dijkstra's algorithm

Sections 5.1.1 - 5.1.3 Minimum Spanning Tree

Chapter 6 Dynamic Programming

Sections 7.1-7.4 Linear programming and Flows

Chapter 8 NP-completeness

Sections 9.2 - 9.3

03-02-2020 Combinatorial Optimization 12

Course bibliography: tutorials

The answers to all exercises will be provided.

Some extra material will be used and placed on
blackboard.

Tutorial exercises are part of the exam material.

Questions from the slides are intended to motivate
discussion and reflection.

03-02-2020 Combinatorial Optimization 13

Today’s course

Main source: notes om Graphs by René Sitters

Additionally, from the book Algorithms:
• Preliminaries from chapter 0
• Paths in graphs including Dijkstra in chapter 4

03-02-2020 Combinatorial Optimization 14

What is combinatorial optimization?

Combinatorial optimization is ‘just’ to choose the best
(optimum) from a finite number of alternatives.

Seems easier than it really is… since finite does not mean
attainable.

It is common to confuse combinatorial optimization with
integer programming, especially with binary variables.

A stronger relation exists between combinatorial
optimization and combinatorial decision problems: does
a given instance have a specific type of solution?

03-02-2020 Combinatorial Optimization 15

The focus of the course

Highlighting some areas such as graphs, networks,
routing, packing, scheduling, …

Identifying important problems in those areas.
Distinguishing ‘easy’ from ‘difficult’ problems.

Be able to prove that a ‘difficult’ problem is indeed
difficult.

Presenting mathematical models for these problems.
Studying the important properties of these models.
Explaining solution procedures for each problem,
emphasizing on computational efficiency.

03-02-2020 Combinatorial Optimization 16

How difficult is a combinatorial
optimization problem?

We will learn that combinatorial optimization problems
may differ much in the effort needed to solve them.

We will understand that there are mainly two types of
combinatorial optimization problems:
- Those that we can solve efficiently
- Those that are as hard to solve as the hardest

combinatorial optimization problems

03-02-2020 Combinatorial Optimization 17

Typical structure of a ‘topic’

A problem description
A proof of hardness in case the problem is indeed hard
Algorithms, including analysis of the effort
• Exact (optimal)
• Heuristic (sometimes approximation) if the problem

is hard

03-02-2020 Combinatorial Optimization 18

Effort of algorithms

Running time is not a property of the problem, is a
characteristic of algorithms and their implementation
details!

Effort is measured by counting ‘elementary operations’
as a function of the ‘input size’.

These concepts will be defined later in detail, important
for now is understanding that differences between
computers or languages should not matter.

We start with a simple example.

1903-02-2020 Combinatorial Optimization

Computing Prefix Averages

Let us illustrate computational effort
analysis with two algorithms for
prefix averages

The 𝑖𝑡ℎ prefix average of an array 𝑿
is average of the first 𝒊 elements of
𝑿:

𝑨𝒊 =
𝑿1 + 𝑿2 + … + 𝑿𝑖

𝑖

Computing the array 𝑨 of prefix
averages of another array 𝑿 has
applications to financial analysis

20

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7

X

A

03-02-2020 Combinatorial Optimization

Prefix Averages version 1

The following implementation computes prefix averages by applying
the definition

def PrefixAverages1(X):
Input array X of n integers
Output array A of prefix averages of X

operations
n = len(X) # O(1)
A = [0]*n # O(n)
for i in range(n): # O(n)

s = 0 # O(n)
for j in range(i+1): # O(1+2+3+ ... + n) <- highest

s = s + X[j] # O(1+2+3+ ... + n) <- highest
A[i] = s / (i+1) # O(n)

return A # O(1)

2103-02-2020 Combinatorial Optimization

Prefix Averages version 2

The following implementation computes prefix averages in less time
by keeping a running sum

def PrefixAverages2(X):
Input array X of n integers
Output array A of prefix averages of X

operations
n = len(X) # O(1)
A = [0]*n # O(n)
s = 0 # O(1)
for i in range(n): # O(n)

s = s + X[i] # O(n) <- highest
A[i] = s / (i+1) # O(n)

return A # O(1)

03-02-2020 Combinatorial Optimization 22

How does the effort change with 𝑛?

The running time of
PrefixAverages1 is
dominated by
1 + 2 + … + 𝒏

The sum of the first 𝒏

integers is
𝒏 𝒏 + 1

𝟐

The running time of
PrefixAverages2 is
dominated by 𝑛

2303-02-2020 Combinatorial Optimization

Order of

We say that a function 𝑓 is of order of a
function 𝑔 and write:

𝑓 𝑛 = 𝑂(𝑔 𝑛)

if there is a constant c and a number k such that

𝑓 𝑛 ≤ 𝑐𝑔 𝑛 for all 𝑛 ≥ 𝑘.

03-02-2020 Combinatorial Optimization 24

Prefix averages: conclusion

Understanding that
PrefixAverages1 is 𝑂 𝑛2 and
PrefixAverages2 is 𝑂(𝑛) should
become more or less
‘automatic’.

Concluding that
PrefixAverages2 is much more
efficient and scales much
better with the growth of the
input should then be
immediate.

03-02-2020 Combinatorial Optimization 25

Effort is an implementation issue!

It is common to say

this problem can be solved in 𝑂(𝑔(𝑛))

for some function 𝑔, but it is not always obvious how to
achieve the specified effort.

As we just saw, a roughly described algorithm leaves so many
details to the implementation that the factual runtime may
change the nature of the function 𝑔!

We will see this again at the end of today’s course when
studying max flow algorithms.

2603-02-2020 Combinatorial Optimization

Complementary material

03-02-2020 Combinatorial Optimization 27

What is this course all about?

Models
Theorems
Proofs
Methods
Algorithms
Implementations
Computational effort
Computational complexity

03-02-2020 Combinatorial Optimization 28

Start with ‘decision’ problems

Is this number prime?
Can I reach that location from this one using the
available roads?
Can I finish my tasks in less than a given amount of time?
Can I draw this graph without lifting the pen and without
retracing lines?

03-02-2020 Combinatorial Optimization 29

Let us illustrate a few things

We will now see how a theorem, and in particular its
proof, may relate to:
- Answering a decision problem: yes or no
- Understanding the effort of making the decision
- Leading to an algorithm to find an yes answer if it

exists
- Determining the effort of finding a solution

03-02-2020 Combinatorial Optimization 30

Do you know this puzzle?

03-02-2020 Combinatorial Optimization 31

Answer is yes

03-02-2020 Combinatorial Optimization 32

What if you get the following cases?

03-02-2020 Combinatorial Optimization 33

What if you get the following cases?

03-02-2020 Combinatorial Optimization 34

What if you get the following cases?

03-02-2020 Combinatorial Optimization 35

What if you get the following cases?

03-02-2020 Combinatorial Optimization 36

What if you get the following cases?

03-02-2020 Combinatorial Optimization 37

Let us go back in time…

03-02-2020 Combinatorial Optimization 38

The 7 bridges of Königsberg
in the XVIIIth century

03-02-2020 Combinatorial Optimization 39

A scheme: simplifies experimentation

03-02-2020 Combinatorial Optimization 40

A scheme: simplifies experimentation

03-02-2020 Combinatorial Optimization 41

Higher abstraction: a model!

03-02-2020 Combinatorial Optimization 42

Our first model: a graph (see notes!)

• Some points: nodes or vertices.
• Some lines connecting pairs of points: edges or arcs

(in case they can only be traversed in one way).
• The number of edges at each node is called the

degree of that node.
• In case of arcs then we distinguish in-degree and out-

degree.
• Two nodes are connected if one can move from the

first to the second node using edges or arcs and
maybe intermediate nodes.

03-02-2020 Combinatorial Optimization 43

The first graph theorem of Euler (1736)

03-02-2020 Combinatorial Optimization 44

A connected (multi)graph has

an Eulerian path if and only

if the number of nodes with

odd degree is 0 or 2.

May the number be 0 then

the path is a cycle: it starts

and finishes on the same

node.

Remarks

The theorem gives a certificate for a graph to be
Eulerian.

This certificate is very easy (and in fact efficient) to
check.

In itself, the certificate does not disclose nor requires an
actual solution to the problem.

03-02-2020 Combinatorial Optimization 45

03-02-2020 Combinatorial Optimization 46

03-02-2020 Combinatorial Optimization 47

03-02-2020 Combinatorial Optimization 48

4

03-02-2020 Combinatorial Optimization 49

4 4

03-02-2020 Combinatorial Optimization 50

4 4

33

03-02-2020 Combinatorial Optimization 51

4 4

33

03-02-2020 Combinatorial Optimization 52

4 4

33

03-02-2020 Combinatorial Optimization 53

4 4

33

03-02-2020 Combinatorial Optimization 54

4 4

33

03-02-2020 Combinatorial Optimization 55

4 4

33

03-02-2020 Combinatorial Optimization 56

A theorem must be proven

03-02-2020 Combinatorial Optimization 57

03-02-2020 Combinatorial Optimization 58

03-02-2020 Combinatorial Optimization 59

03-02-2020 Combinatorial Optimization 60

03-02-2020 Combinatorial Optimization 61

03-02-2020 Combinatorial Optimization 62

What did the proof give us?

Some magic: we can now say that it holds for all graphs
although we may not claim to have seen all graphs!

A present: an algorithm! Note that the algorithm
revealed by the (constructive) proof is not provided by
the theorem itself.

What do you think about the effort needed to apply this
algorithm?

03-02-2020 Combinatorial Optimization 63

question

Consider a connected (multi)graph with
𝑛 nodes and 𝑚 edges.

What is the effort required to check if
this graph is Eulerian?

In case the graph is Eulerian: what is
the effort required to find a Eulerian
path or cycle?

And what about the seven bridges?

03-02-2020 Combinatorial Optimization 65

Not possible!

03-02-2020 Combinatorial Optimization 66

Option 1: remove at least one bridge

03-02-2020 Combinatorial Optimization 67

Happened Königsberg in World War II

03-02-2020 Combinatorial Optimization 68

Nowadays it is possible!

03-02-2020 Combinatorial Optimization 69

Option 2: add bridges!

03-02-2020 Combinatorial Optimization 70

Chinese Postman Problem:

What is the minimum number of edges

we need to add to make the graph

Eulerian?

First studied by Chinese scientist, Kwan

Mei-Ko in 1960

Efficient algorithm by Jack Edmonds, 1965

note

Although we are still discussing decision problems we
just met an optimization problem!

This optimization problem minimizes the effort needed
to make a given graph become Eulerian.

You will see it again later and learn its name: a matching
problem.

Although these matching problems can be efficiently
solved on general graphs some graphs called bipartite
allow for an easier algorithm.

03-02-2020 Combinatorial Optimization 71

What else do we get form graphs?

03-02-2020 Combinatorial Optimization 72

Reality

03-02-2020 Combinatorial Optimization 73

Simplification

03-02-2020 Combinatorial Optimization 74

Abstraction

03-02-2020 Combinatorial Optimization 75

Roadmaps are large graphs

03-02-2020 Combinatorial Optimization 76

This is an optimization problem!

There are usually (many!) alternative ways to go from
our origin to destination.

We want to find the ‘best’ defined as fastest or shortest

Hopefully not by computing and comparing all the
possibilities!

03-02-2020 Combinatorial Optimization 77

question
can you estimate the number of
alternative paths between two
nodes for some types of graphs?

?

A

B C

D E

10

1

4 6

2

5

2 3
7

9

Shortest path from A to C

03-02-2020 Combinatorial Optimization 79

?

A

B C

D E

10

1

4 6

2

5

2 3
7

9

Edsger Wybe Dijkstra (1930 –2002)

03-02-2020 Combinatorial Optimization 80

0

?

A

B C

D E

10

1

4 6

2

5

2 3
7

9

Edsger Wybe Dijkstra (1930 –2002)

03-02-2020 Combinatorial Optimization 81

10

0

5

?

A

B C

D E

10

1

4 6

2

5

2 3
7

9

Edsger Wybe Dijkstra (1930 –2002)

03-02-2020 Combinatorial Optimization 82

10

0

5

?

A

B C

D E

10

1

4 6

2

5

2 3
7

9

Edsger Wybe Dijkstra (1930 –2002)

03-02-2020 Combinatorial Optimization 83

8

0

5 7

14

A

B C

D E

10

1

4 6

2

5

2 3
7

9

Edsger Wybe Dijkstra (1930 –2002)

03-02-2020 Combinatorial Optimization 84

8

0

5 7

14

A

B C

D E

10

1

4 6

2

5

2 3
7

9

Edsger Wybe Dijkstra (1930 –2002)

03-02-2020 Combinatorial Optimization 85

8

0

5 7

13

A

B C

D E

10

1

4 6

2

5

2 3
7

9

Edsger Wybe Dijkstra (1930 –2002)

03-02-2020 Combinatorial Optimization 86

8

0

5 7

13

A

B C

D E

10

1

4 6

2

5

2 3
7

9

Edsger Wybe Dijkstra (1930 –2002)

03-02-2020 Combinatorial Optimization 87

8

0

5 7

9

A

B C

D E

10

1

4 6

2

5

2 3
7

9

Edsger Wybe Dijkstra (1930 –2002)

03-02-2020 Combinatorial Optimization 88

8

0

5 7

9

A

B C

D E

10

1

4 6

2

5

2 3
7

9

Edsger Wybe Dijkstra (1930 –2002)

03-02-2020 Combinatorial Optimization 89

8

0

5 7

9

A

B C

D E

10

1

4 6

2

5

2 3
7

9

Edsger Wybe Dijkstra (1930 –2002)

03-02-2020 Combinatorial Optimization 90

question

Can you list the assumptions one needs
to make about the given graph in order
for Dijkstra’s algorithm to guarantee
finding the optimal solution?

Can you estimate the effort needed to
apply this algorithm on a graph with 𝑛
nodes and 𝑚 arcs?

notes

It is clearly important that on each round of the algorithm
(we will call these iterations) exactly one node becomes
definitely labeled.

Therefore the number of iterations does not exceed the
number of nodes.

We need now to estimate the effort of each iteration!

There are many answers depending on the data structures
used! Please pay attention to this!

The design of efficient algorithms is a challenge that goes
beyond the proof of correctness

03-02-2020 Combinatorial Optimization 92

Let us meet
the Greedy
paradigm

03-02-2020

Combinatorial Optimization 93

minimum spanning trees

Greedy algorithms

A greedy algorithm extends its wealth (the solution
being constructed) by taking the step with highest
immediate gain.

Despite being well-known that greedy algorithms are
often sub-optimal, today we see one case where they
are optimal!

9403-02-2020 Combinatorial Optimization

Greedy can be optimal!

In fact, there is a whole collection of optimization
problems defined in clean mathematical terms for which
greedy is optimal: the matroids (for another course).

The most famous and easy to explain example is the so-
called Minimal Spanning Tree.

9503-02-2020 Combinatorial Optimization

Problem: laying cables

Central office

03-02-2020 Combinatorial Optimization 96

Expensive: dedicated connection

Central office

03-02-2020 Combinatorial Optimization 97

A better solution

Central office

03-02-2020 Combinatorial Optimization 98

or or or

Some Spanning Trees from Graph AGraph A

Spanning Trees

A tree is a connected graph without cycles.

A spanning tree of a graph is tree that contains all the
vertices of the graph.

A graph may have many spanning trees.

03-02-2020 Combinatorial Optimization 99

All 16 of its Spanning TreesComplete Graph

03-02-2020 Combinatorial Optimization 100

question
Can you give an upper bound on
the number of spanning trees of a
given graph?

5

7

2

1

3

4

2

1

3

Complete Graph Minimum Spanning Tree

Minimum Spanning Trees

The Minimum Spanning Tree for a given graph is the
Spanning Tree of minimum cost for that graph.

03-02-2020 Combinatorial Optimization 102

notes

Finding the minimum spanning tree of a connected
undirected graph is very efficient.

A greedy algorithm (i.e. an algorithm expanding a partial
solution in the best way as perceived at that moment) is
optimal in this case.

Several different algorithms may have different
efficiencies though…

03-02-2020 Combinatorial Optimization 103

On the book Algorithms

First section in chapter 5 on Greedy algorithms

03-02-2020 Combinatorial Optimization 104

Algorithms for Minimum Spanning Tree

Kruskal's Algorithm

Prim's Algorithm

03-02-2020 Combinatorial Optimization 105

Kruskal's Algorithm

This algorithm creates a forest of trees. Initially the
forest consists of n single node trees (and no edges). At
each step, we add one edge (the cheapest one) so that it
joins two trees together. If it were to form a cycle, it
would simply link two nodes that were already part of a
single connected tree, so that this edge would not be
needed.

03-02-2020 Combinatorial Optimization 106

Kruskal's Algorithm

The steps are:

1. The forest is constructed - with each node in a separate tree.
2. The edges are placed in a priority queue.
3. Until we've added 𝑛 − 1 edges,

1. Extract the cheapest edge from the queue,
2. If it forms a cycle, reject it,
3. Else add it to the forest. Adding it to the forest will join two

trees together.

Every step will have joined two trees in the forest together, so that
at the end, there will only be one tree.

03-02-2020 Combinatorial Optimization 107

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

Given Graph

03-02-2020 Combinatorial Optimization 108

1

4

2

5

2

5

4

3

4

4

4

10

1

6

3

3

2

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

A AB D

B B

B

C D

J C

C

E

F

D

D H

J E G

F FG I

G GI J

H J JI

03-02-2020 Combinatorial Optimization 109

2

5

2

5

4

3

4

4

10

1

6

3

3

2

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

B

B

D

J

C

C

E

F

D

D H

J

E G

F

F

G

I

G

G

I

J

H J

JI

1A D

4B C

4A B

Sort Edges

(in reality they are placed in a priority

queue - not sorted - but sorting them

makes the algorithm easier to visualize)

03-02-2020 Combinatorial Optimization 110

2

5

2

5

4

3

4

4

10

1

6

3

3

2

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

B

B

D

J

C

C

E

F

D

D H

J

E G

F

F

G

I

G

G

I

J

H J

JI

1A D

4B C

4A B

Add Edge

03-02-2020 Combinatorial Optimization 111

2

5

2

5

4

3

4

4

10

1

6

3

3

2

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

B

B

D

J

C

C

E

F

D

D H

J

E G

F

F

G

I

G

G

I

J

H J

JI

1A D

4B C

4A B

Add Edge

03-02-2020 Combinatorial Optimization 112

2

5

2

5

4

3

4

4

10

1

6

3

3

2

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

B

B

D

J

C

C

E

F

D

D H

J

E G

F

F

G

I

G

G

I

J

H J

JI

1A D

4B C

4A B

Add Edge

03-02-2020 Combinatorial Optimization 113

2

5

2

5

4

3

4

4

10

1

6

3

3

2

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

B

B

D

J

C

C

E

F

D

D H

J

E G

F

F

G

I

G

G

I

J

H J

JI

1A D

4B C

4A B

Add Edge

03-02-2020 Combinatorial Optimization 114

2

5

2

5

4

3

4

4

10

1

6

3

3

2

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

B

B

D

J

C

C

E

F

D

D H

J

E G

F

F

G

I

G

G

I

J

H J

JI

1A D

4B C

4A B

Add Edge

03-02-2020 Combinatorial Optimization 115

2

5

2

5

4

3

4

4

10

1

6

3

3

2

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

B

B

D

J

C

C

E

F

D

D H

J

E G

F

F

G

I

G

G

I

J

H J

JI

1A D

4B C

4A B

Cycle

Don’t Add Edge

03-02-2020 Combinatorial Optimization 116

2

5

2

5

4

3

4

4

10

1

6

3

3

2

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

B

B

D

J

C

C

E

F

D

D H

J

E G

F

F

G

I

G

G

I

J

H J

JI

1A D

4B C

4A B

Add Edge

03-02-2020 Combinatorial Optimization 117

2

5

2

5

4

3

4

4

10

1

6

3

3

2

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

B

B

D

J

C

C

E

F

D

D H

J

E G

F

F

G

I

G

G

I

J

H J

JI

1A D

4B C

4A B

Add Edge

03-02-2020 Combinatorial Optimization 118

2

5

2

5

4

3

4

4

10

1

6

3

3

2

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

B

B

D

J

C

C

E

F

D

D H

J

E G

F

F

G

I

G

G

I

J

H J

JI

1A D

4B C

4A B

Add Edge

03-02-2020 Combinatorial Optimization 119

2

5

2

5

4

3

4

4

10

1

6

3

3

2

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

B

B

D

J

C

C

E

F

D

D H

J

E G

F

F

G

I

G

G

I

J

H J

JI

1A D

4B C

4A B

Cycle

Don’t Add Edge

03-02-2020 Combinatorial Optimization 120

2

5

2

5

4

3

4

4

10

1

6

3

3

2

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

B

B

D

J

C

C

E

F

D

D H

J

E G

F

F

G

I

G

G

I

J

H J

JI

1A D

4B C

4A B

Add Edge

03-02-2020 Combinatorial Optimization 121

4

1

2

2 1

3

32

4

A

B C

D

E F

G

H

I

J

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

Minimum Spanning Tree Given Graph

03-02-2020 Combinatorial Optimization 122

question

Can you estimate the running time of
Kruskal’s algorithm?

Can you also elaborate on the
assumptions you make about graph
representation and data structures
used?

Prim's Algorithm

This algorithm starts with one node. It then, one by one,
adds a node that is unconnected to the new graph to the
new graph, each time selecting the node whose
connecting edge has the smallest weight out of the
available nodes’ connecting edges.

03-02-2020 Combinatorial Optimization 124

Prim's Algorithm

The steps are:

1. The new graph is constructed - with one node from the old graph.
2. While new graph has fewer than n nodes,

1. Find the node from the old graph with the smallest connecting edge to
the new graph,

2. Add it to the new graph

Every step will have joined one node, so that at the end we will have one graph
with all the nodes and it will be a minimum spanning tree of the original graph.

03-02-2020 Combinatorial Optimization 125

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

Given Graph

03-02-2020 Combinatorial Optimization 126

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

Old Graph New Graph

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

03-02-2020 Combinatorial Optimization 127

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

Old Graph New Graph

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

03-02-2020 Combinatorial Optimization 128

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

Old Graph New Graph

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

03-02-2020 Combinatorial Optimization 129

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

Old Graph New Graph

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

03-02-2020 Combinatorial Optimization 130

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

Old Graph New Graph

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

03-02-2020 Combinatorial Optimization 131

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

Old Graph New Graph

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

03-02-2020 Combinatorial Optimization 132

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

Old Graph New Graph

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

03-02-2020 Combinatorial Optimization 133

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

Old Graph New Graph

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

03-02-2020 Combinatorial Optimization 134

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

Old Graph New Graph

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

03-02-2020 Combinatorial Optimization 135

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

Old Graph New Graph

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

03-02-2020 Combinatorial Optimization 136

4

1

2

2 1

3

32

4

A

B C

D

E F

G

H

I

J

Given Graph Minimum Spanning Tree

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

03-02-2020 Combinatorial Optimization 137

question

Can you estimate the running time of
Prim’s algorithm?

Can you also elaborate on the
assumptions you make about graph
representation and data structures
used?

maximum
flow

Ford-Fulkerson and
extensions

03-02-2020

Combinatorial Optimization 139

Flow problems

Ford-Fulkerson method for maximum flow (MaxFlow).

Shortest augmenting path algorithm for MaxFlow.

Some generalizations of the MaxFlow problem.

The minimum cost flow problem.

03-02-2020 Combinatorial Optimization 140

Max flow

Given a network directed from a source vertex to a
target vertex with a maximum capacity on each arc
determine the highest value of a flow from the source to
the target which respects the capacities and is preserved
at each intermediate vertex.

03-02-2020 Combinatorial Optimization 141

Method of Ford and Fulkerson

Start with a flow of zero.

At each iteration consider the residual graph composed of
• The original arcs with capacity equal to the difference between the original

capacity and the flow on the arc (the residual capacity) if this value is
positive, otherwise the arc is eliminated.

• Arcs opposite to the original ones with capacity equal to the flow passing
on the corresponding arc if a (positive) flow passes on the arc.

Determine a path from source to target on the residual graph, if it exists, and
update the flow with the minimum capacity along the path (increase flow for
original arcs, decrease for opposite arcs). Update the residual graph. May such
a path not exist, terminate, the flow is maximum.

Following
https://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm

we call this a method instead of an algorithm because it lacks detailing an
important step: determining a positive flow.

03-02-2020 Combinatorial Optimization 142

https://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm

s

2

3

4

5 t10

10

9

8

4

10

1062

𝐷 = (𝑉, 𝐴)
capacity

Ford-Fulkerson example

03-02-2020 Combinatorial Optimization 143

s

2

3

4

5 t10

10

9

8

4

10

1062

0

0

0

0 0 0

0

0

𝐷 = (𝑉, 𝐴)

Flow value = 0

0

flow

capacity

Ford-Fulkerson example

03-02-2020 Combinatorial Optimization 144

Ford-Fulkerson example

03-02-2020 Combinatorial Optimization 145

s

2

3

4

5 t10

10

9

8

4

10

1062

0

0

0

0 0 0

0

0

s

2

3

4

5 t10 9

4

106210 8

10

8 8

8

X X

X

0

Flow value = 0

capacity

residual capacity

flow

𝐷 = (𝑉, 𝐴)

Residual graph

𝐷𝑓 = (𝑉, 𝐴𝑓)

s

2

3

4

5 t10

10

9

8

4

10

1062

8

0

0

0 0 8

8

0 0

s

2

3

4

5 t10

4

106

8

8

8

9

22

2

10

2
10

X

X

X2X

Flow value = 8

𝐷 = (𝑉, 𝐴)

𝐷𝑓 = (𝑉, 𝐴𝑓)

Ford-Fulkerson example

03-02-2020 Combinatorial Optimization 146

Residual graph

0

s

2

3

4

5 t10

10

9

8

4

10

1062

10

0

0

0 2 10

8

2

s

2

3

4

5 t

4

2

10

810

2

10 7

106

X

6
6

6

X

X

8X

Flow value = 10

𝐷 = (𝑉, 𝐴)

Ford-Fulkerson example

03-02-2020 Combinatorial Optimization 147

Residual graph

𝐷𝑓 = (𝑉, 𝐴𝑓)

s

2

3

4

5 t10

10

9

8

4

10

1062

10

0

6

6 8 10

8

2

s

2

3

4

5 t1

6

10

810

8

6

6

6

4

4

4

2

X

8

2

8

X

X

0
X

Flow value = 16

𝐷 = (𝑉, 𝐴)

Ford-Fulkerson example

03-02-2020 Combinatorial Optimization 148

Residual graph

𝐷𝑓 = (𝑉, 𝐴𝑓)

s

2

3

4

5 t10

10

9

8

4

10

1062

10

2

8

8 8 10

8

0

s

2

3

4

5 t

62

10

10

8

6

8

8

2

2 1

2

8 2

X

9

7 9

X

X

9X

X 3

Flow value = 18

𝐷 = (𝑉, 𝐴)

Ford-Fulkerson example

03-02-2020 Combinatorial Optimization 149

Residual graph

𝐷𝑓 = (𝑉, 𝐴𝑓)

s

2

3

4

5 t10

10

9

8

4

10

1062

10

3

9

9 9 10

7

0

s

2

3

4

5 t1 9

1

162

10

710

6

9

9

3

1

Flow value = 19

𝐷 = (𝑉, 𝐴)

Ford-Fulkerson example

03-02-2020 Combinatorial Optimization 150

Residual graph

𝐷𝑓 = (𝑉, 𝐴𝑓)

s

2

3

4

5 t10

10

9

8

4

10

1062

10

3

9

9 9 10

7

0

s

2

3

4

5 t1 9

1

162

10

710

6

9

9

3

1

Flow value = 19Cut capacity = 19

𝐷 = (𝑉, 𝐴)

Ford-Fulkerson example

03-02-2020 Combinatorial Optimization 151

Residual graph

𝐷𝑓 = (𝑉, 𝐴𝑓)

Ford-Fulkerson: Analysis.

Theorem: Min cut = Max flow , and FF algorithm finds them.

Proof: Clearly, Min cut ≥ Max flow. (*)

Other direction:

When algorithm terminates, it gives a cut C and a flow F for which

value(C) = value(F) →

min cut ≤ value(C) = value(F) ≤ max flow (**)

(*) + (**) → min cut = value(C) = value(F) = max flow

03-02-2020 Combinatorial Optimization 152

Ford-Fulkerson: Analysis.

Corollary:

If all capacities are integer then there is integer maximum

flow.

Proof:

If all capacities are integer then the flow found by FF is

integer.

03-02-2020 Combinatorial Optimization 153

Ford-Fulkerson: Analysis.

🤔 Does FF algorithm always terminate?

It depends on the capacities:

Integer capacities:

▪ Yes, since the flow value increases by at least 1 in every iteration.

Rational capacities:

▪ Yes, since the flow value increases by at least some small epsilon in every iteration.

Real valued capacities: (Note: not realistic in practice)

▪ See a nonterminating example in

https://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm

▪ But it will terminate with a small modification of the algorithm. (See next slides.)

03-02-2020 Combinatorial Optimization 154

https://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm

Ford-Fulkerson: Analysis.

🤔 How about the running time?

𝑂(𝑛) per iteration, but how many iterations can we have?

iterations may be as large as max flow value!

Is there an algorithm for which the running time only depends on the size

of the graph, and not on the capacities? Yes! Next slides.

1000

ts

10001000

1000

1

Example: 2000 iterations if the algorithm always chooses the arc in the middle.

03-02-2020 Combinatorial Optimization 155

Shortest augmenting path algorithm

By Edmonds-Karp-Dinitz (1970)

Algorithm:

Apply the FF algorithm but always choose the path with the

minimum number of edges.

Let n be the number of vertices and let m be the number of edges.

Theorem

Shortest augmenting path algorithm takes 𝑂(𝑛𝑚) iterations.

03-02-2020 Combinatorial Optimization 156

Shortest augmenting path, example

Network 1st Residual graphFind augmenting path

Update Layer

Iteration 1

03-02-2020 Combinatorial Optimization 157

Shortest augmenting path

1st Residual Find augmenting path 2nd residual

Update Layer

Iteration 2

03-02-2020 Combinatorial Optimization 158

Shortest augmenting path

2nd Residual Find augmenting path 3rd residual

Update Layer

Iteration 3

03-02-2020 Combinatorial Optimization 159

3rd residual Find augmenting path 4th residual

Shortest augmenting path

Update Layer

Iteration 4

03-02-2020 Combinatorial Optimization 160

Shortest augmenting path

4th residual

Maximum flow

No more path from 𝑠 to 𝑡.

Max flow found →

03-02-2020 Combinatorial Optimization 161

Analysis (not for exam)

Let 𝒅(𝒔, 𝒖) be the depth of vertex 𝑢 in the residual graph (i.e., the number of

arcs on the shortest path between 𝑠 and 𝑢).

augment

0

1

2

3

re-layer

Example. Points 𝑓 and 𝑡 move down

Lemma 1 For any point 𝑢, the depth 𝑑(𝑠, 𝑢) never decreases.

Proof

• Deleting an arc will not decrease 𝑑(𝑠, 𝑢)

• Adding an arc may only decrease 𝑑(𝑠, 𝑢) if the arc is forward (down). However, we never add a forward arc.

03-02-2020 Combinatorial Optimization 162

Analysis (not for exam)

Call an arc (𝑢, 𝑣) in the residual graph critical if it has the minimum capacity on

the augmenting path.

Lemma 2 𝑑(𝑠, 𝑢) increases between two critical moments of arc (𝑢, 𝑣).

Proof (Hint: check this proof for arc (𝑎, 𝑓) in the example)

If arc (𝑢, 𝑣) is critical then 𝑣 is below 𝑢 and the arc will be removed from the

residual graph. (See (𝑎, 𝑓) in iteration 1).

Arc (𝑢, 𝑣) will only return in the residual when arc (𝑣, 𝑢) is on the augmenting

path in some iteration.

But then 𝑢 must be below 𝑣. Since 𝑣 did not went up, point 𝑢 must have moved

down. (See (𝑎, 𝑓) in iteration 4).

03-02-2020 Combinatorial Optimization 163

Theorem

Shortest augmenting path algorithm takes 𝑂(𝑛𝑚) iterations.

Proof

By Lemma 2, each arc is critical only 𝑂(𝑛) times (since the

depth of 𝑣 is less than 𝑛 and 𝑣 goes down between two critical

moments of (𝑢, 𝑣)).

Further, there is at least one critical arc in each iteration.

→ There are no more than 𝑂(𝑛𝑚) iterations.

Analysis (not for exam)

03-02-2020 Combinatorial Optimization 164

Generalizations of the maximum flow
problem

A polynomial time algorithm for the following versions of the max-flow
problem follows by reducing each version to the original form of the
max-flow problem. The concept of polynomial time reduction will be
explained next week.

a) The network has many sources and many sinks.

b) The network is undirected.

c) The nodes as well as the arcs have capacities.

d) The network is undirected and the nodes have capacities

e) There are lower bounds (and no upper bounds) on the flow through
each arc.
(Goal :Find min flow)

03-02-2020 Combinatorial Optimization 165

(a) Add two vertices and make these the new source and sink. Add an arc from 𝑠 to each 𝑠𝑖 and
an arc from each 𝑡𝑖 to 𝑡.

s1

s2

s3

s4

t1

t2

tS

infinite capacity

(b) Replace each edge by two arcs. Give each arc the capacity of the edge.

capacity c(e)
both arcs capacity c(e)

Generalizations of max flow

03-02-2020 Combinatorial Optimization 166

a) The network has many sources and many sinks.
b) The network is undirected

(c) Split each node in two nodes and add an arc.

capacity 𝑏(𝑣) capacity 𝑏(𝑣)

(d) Do both operations (b) and (c).

capacity 𝑏(𝑣) capacity 𝑏(𝑣)

c) The nodes as well as the arcs have capacities.
d) The network is undirected and the nodes have capacities.

Generalizations of max flow

03-02-2020 Combinatorial Optimization 167

e) There are lower bounds (and no upper bounds) on the flow through each arc.
Goal: Find min flow

Generalizations of max flow

03-02-2020 Combinatorial Optimization 168

Algorithm: Step 1: First find a feasible flow (= easy)
Step 2: Iteratively, reduce along flow reducing paths.

s t
[1][0]

[3]

[1] [3]

s t

s t
[1][0]

[3]

[1] [3]

3

3

2

2

Feasible flow of value 6

Residual graph:

Numbers are upper bounds. No number means no

(or infinite) upper bound.

Add flow of value 2 over the path.

s t
[1][0]

[3]

[1] [3]

3 1

2

1 3

New (and minimum) flow.

Min cost flow

03-02-2020 Combinatorial Optimization 169

ts

4

1 2

5

32
2

2

1 1

2

1

capacity

cost per unit flow

Example:

Sending 2 units over the path 𝑠, 𝑎, 𝑡 costs 2･4+2･5=18.

Is this the cheapest flow of value 2?

a

b

Problem:

Given the network with costs and capacities and a flow value 𝑣, we need

to find an 𝑠 − 𝑡 flow of value 𝑣 of minimum cost.

Min cost flow

03-02-2020 Combinatorial Optimization 170

ts

4

1 2

5

32
2

2

1 1

2

1

capacity

cost per unit flow

Algorithm:

Step 1: Find a feasible flow of value v (for example by FF). Construct residual graph (negative of the cost

for reverse arcs)

Step 2: While there is a negative-cost cycle in residual graph:

Add flow over the cycle.

Update the residual graph.

How to find?

e.g. Bellman Ford algorithm.

(Not in this course)

Min cost flow

Example: Find a min cost flow of value 2.

ts
2

2

1 1
2

1

2

1

ts

4

1 2

5

32
2

2

1 1

2

1

Initial flow of value 2.

Cost = 2･4+2･5=18

Given network.

ts

- 4

1 2

- 5

3
2

2

1 1

2

1

2

1st residual graph

Is there a negative cycle?

03-02-2020 Combinatorial Optimization 171

ts

- 4

1 2

- 5

3
2

2

1 1

2

1

ts
2

2

1 1
2

1

1

1

Network with the updated flow.

Cost is reduced by 1. New cost=17.

2

1st residual graph.

Negative cycle of cost: -5+2+2= -1

Min residual capacity is 1.Send 1 unit along this cycle.

ts

- 4

1 -2

- 53
2

2

1 1

1

1

-2

2nd residual graph

1 5

Is there a negative cycle?

Min cost flow

03-02-2020 Combinatorial Optimization 172

ts
2

2

1 1
2

1

1

1

Network with the updated flow.

Cost is reduced by 5. New cost=12.

2nd residual graph.

Negative cycle of cost: 1-2-4= -5

Min residual capacity is 1. Send 1 unit along this cycle.

ts

- 4

1 -2

- 53
2

2

1 1

1

1

-2

1 5

Is there a negative cycle?

No. -> The flow has minimum cost.

ts

4

1

-2

- 5
3

1

1

1 1

1

1

2

1 5

3rd residual graph

- 4

1

-1
1

Min cost flow

03-02-2020 Combinatorial Optimization 173

Min cost flow:

Theorem:

A flow is a minimum cost flow (of given value v)

→

Residual graph has no negative-cost cycles

Corollary:

The algorithm always returns the minimum cost flow.

03-02-2020 Combinatorial Optimization 174

