ANSWERS

Answer 1

(b)

(D) max
$$y_1 + y_2 + y_3 + y_4 + y_5 + y_6 + y_7 + y_8 + y_9 + y_{10}$$

s.t. $y_1 + y_2 + y_3 + y_4 + y_5 \le 3$
 $y_6 + y_7 + y_8 + y_9 + y_{10} \le 3$
 $y_1 + y_6 \le 2$
 $y_2 + y_7 \le 2$
 $y_3 + y_8 \le 2$
 $y_4 + y_9 \le 2$
 $y_5 + y_{10} \le 2$
 $y_i \ge 0$ for $i = 1, 2, ..., 10$.

(c)

iter.	<i>y</i> ₁	<i>y</i> ₂	у3	<i>y</i> ₄	<i>y</i> ₅	<i>y</i> ₆	<i>y</i> ₇	<i>y</i> ₈	у 9	<i>y</i> ₁₀
0	0	0	0	0	0	0	0	0	0	0
1	2	0	0	0	0	0	0	0	0	0
2	2	1	0	0	0	0	0	0	0	0
0 1 2 3	2	1	0	0	0	0	1	0	0	0
4	2	1	0	0	0	0	1	2	0	0

The dual solution found is $y_1 = 2, y_2 = 1, y_7 = 1, y_8 = 2$ and all others are zero. The constraints are tight for sets S_1, S_2, S_3, S_4, S_5 . The total weight is 3 + 3 + 2 + 2 + 2 = 12.

Answer 2.

Lower Bound 1: OPT $\geq \max_{j} p_{j}$ Lower Bound 2: OPT $\geq \sum_{j=1}^{n} p_{j}/m$

Let l be the job that completes last. See Figure b. Let S_l be the start time of job l in the schedule. Then $C_{\max} = C_l = S_l + p_l$. No machine has a load (length) that is less than S_l since otherwise the list scheduling algorithm could have started l earlier. Hence, $mS_l \leq \sum_{j \neq l} p_j$. Together with the two lower bounds we obtain:

$$C_{\text{max}} = S_l + p_l$$

$$\leqslant \frac{1}{m} \sum_{j \neq l} p_j + p_l$$

$$= \frac{1}{m} \sum_j p_j + (1 - \frac{1}{m}) p_l$$

$$(LB1) \leqslant \frac{1}{m} \sum_j p_j + (1 - \frac{1}{m}) \text{OPT}$$

$$(LB2) \leqslant \text{OPT} + (1 - \frac{1}{m}) \text{OPT}$$

$$= (2 - \frac{1}{m}) \text{OPT}.$$

Answer 3

- (a) (1) Find a minimum cost spanning tree T.
 - (2) Find a minimum cost matching M on the veritces of odd degree in T
 - (3) Add the matching M to the tree T
 - (4) Find an Euler tour in this graph T + M.
 - (5) Cut short.
- (b) Removing any edge from the optimal tour gives a tree. So, $cost(T) \le OPT$.

Let V' be the set of vertices of odd degree in T. When we cut the optimal tour short on V' we get a tour on V' of length at most OPT. This tour is composed of 2 matchings on V', say M_1 and M_2 . Hence, OPT $\geq \cos(M_1) + \cos(M_2)$. Since the algorithm computes a minimum cost matching we get: $\cos(M) \leq \min\{\cos(M_1), \cos(M_2)\} \leq OPT/2$.

Shortcutting does not increase the length since we assume that the triangle inequality holds.

Answer 4

(a)
$$1/4 + 1/4 + 1/4 + 1/4 + 1/4 = 5/4$$

(b) Let Z be the number of clauses satisfied. Then

$$E[Z|x_1 = T] = 1/2 + 1/2 + 0 + 1/4 + 1/4 = 1.5.$$

$$E[Z|x_1 = F] = 0 + 0 + 1/2 + 1/4 + 1/4 = 1.$$

$$\Rightarrow x_1 = \text{True}.$$

$$E[Z|x_1 = T, x_2 = T] = 1 + 1/2 + 0 + 0 + 1/2 = 2.$$

$$E[Z|x_1 = T, x_2 = F] = 0 + 1/2 + 0 + 1/2 + 0 = 1.$$

$$\Rightarrow x_2 = \text{True}.$$

$$E[Z|x_1 = T, x_2 = T, x_3 = T] = 1 + 0 + 0 + 0 + 0 = 1.$$

$$E[Z|x_1 = T, x_2 = T, x_3 = F] = 1 + 1 + 0 + 0 + 1 = 3.$$

$$\Rightarrow x_3 = \text{False}.$$
3 clauses are satisfied $(C_1, C_2 \text{ and } C_5)$

Answer 5

- (a) Client *j* can only be connected to facility *i* if *i* is opened.
- (b) If $x_{ij} \ge 1/3$ then round it to 1 $(\hat{x}_{ij} = 1)$ and also round y_i to 1 $(\hat{y}_i = 1)$. Connect each client to some i with $x_{ij} \ge 1/3$.

The solution is feasible since for each j there is at least one i with $x_{ij} \ge 1/3$. This follows from the equality constraint and it is given that there are at most 3 values i with $x_{ij} > 0$.

If $x_{ij} \ge 1/3$ then also $y_i \ge x_{ij} \ge 1/3$. Hence, by this rounding we have $\hat{x}_{ij} \le 3x_{ij}$ and $\hat{y}_i \le 3y_i$ for all variables x_{ij}, y_i . The value of the rounded solution is at most 3 times the optimal LP-value, which is at most 3 time the optimal (ILP) value.

Answer 6

(a)
$$(\text{VP}) \ \min \ \lambda$$

$$s.t. \ u_i \cdot u_j \leqslant \lambda, \qquad \text{for all } (i,j) \in E$$

$$u_i \cdot u_i = 1, u_i \in \mathbb{R}^n \quad \text{for all } i \in V.$$

Let the 4 vectors correspond to 4 colors: 1,2,3,4. Given a 4-coloring of the graph we give the vector for vertex i the value $u_i = v_k$ if the color of vertex i is k (with $k \in \{1,2,3,4\}$). Then for any edge (i,j) we have $u_1 \cdot u_j = \cos(\alpha) = -1/3$. For this solution, the value of the VP is -1/3 so the optimal value is at most -1/3.

(b) Let u_1, u_2, \cdot, u_n be an optimal solution. Apply the rounding just as in the Goemans and Williamson algorithm for max cut:

Take a unit length vector $r \in \mathbb{R}^n$ uniformly at random. Partition the vertices depending on $u_i \cdot r \geq 0$ or $u_i \cdot r < 0$. Then:

$$Pr((i, j) \text{ in cut}) \ge \alpha/\pi > 0.6$$

Thus, the cut contains more than 60 percent of the edges in expectation.