
Exam Combinatorial Optimization, 22 October 2020 (version 1)

Time: 18.45-21.30 (2 hours, 45 min.)

• It is not allowed to use any books, notes, or calculator. Just pen and paper.

• You may also obtain points for partial answers.

• Do explain each computation that you make.

• This exam has 7 questions, one on each page. The total number of points is 40

Question 1 (8 points total) The table shows an instance of the weighted Set Cover problem. A
value ‘1’ means that element ei is included in set S j. For example, S1 = {1,2}. The second row
gives the weights of the sets.

S1 S2 S3 S4 S5 S6
100 50 50 30 100 100

e1 1 0 0 0 1 0
e2 1 0 0 0 0 1
e3 0 1 1 0 1 0
e4 0 1 1 0 0 1
e5 0 1 0 1 1 0
e6 0 0 1 1 0 1

(a) (2pt.) Give an optimal solution and its value for this set cover instance.

(b) (2pt.) Give the ILP-formulation for this set cover instance.

(c) (2pt.) Give the the dual of the LP-relaxation of the formulation given in (b). Use a variable
yi for each element ei.

(d) (2pt.) Apply the primal dual algorithm to this instance. Increase the dual values step by step
in the order y1,y2, . . . . Give the final y-values and the sets chosen by the algorithm.

Question 2 (6 points total)

w1 = 4, C1 = x1 _ x2
w2 = 4, C2 = x2 _ x3
w3 = 8, C3 = x3 _ x4 _ x5
w4 = 16, C4 = x3 _ x5 _ x6 _ x7
w5 = 16, C5 = x2 _ x3 _ x4 _ x7

(a) (1pt.) Shown is an instance of the weighted maximum satisfiability problem. What is the
expected total weight of satisfied clauses when you assign each variable independently to
true with probability 0.5? Show your computation.

(b) (1pt.) Assume that you are given an instance in which each clause has at least one positive
x-variable. Argue that an optimal solution is easily found. (For example, for the given
instance, only C5 has no positive variables.)



(c) (2pt.) Argue that the following algorithm is a 0.5-approximation for the weighted maximum
satisfiability problem,.
Consider the following two solutions and take the best:
(1) Set all variables to True.
(2) Set all variables to False.

(d) (2pt.) It is known that the algorithm of question (a) is a 3/4-approximation when all clauses
have at least two variables. Give an example with 2 clauses and 2 variables in each clause
which shows that the approximation ratio of the algorithm of (c) is not better 0.5.

Question 3 (6 points total)

Shown below are the Quadratic Program and the Vector Program relaxation for the maximum
weighted cut problem, where an instance is an edge-weighted graph G = (V,E) on n vertices.

(QP) max 1
2 Â
(i, j)2E

(1� yiy j)wi j

s.t. yi 2 {�1,1} i = 1, . . . ,n.

(VP) max 1
2 Â
(i, j)2E

(1� vi · v j)wi j

s.t. vi · vi = 1, vi 2 Rn
i = 1, . . . ,n.

(a) (1pt.) What is the value of the maximum weighted cut in the graph above (left)? Explain
your answer.

(b) (2pt.) Shown is a solution to the VP for this instance (right). What is the VP-value of this
solution?

(c) (1pt.) Argue that this is not an optimal solution to the VP.

(d) (2pt.) Remember that the max-cut algorithm of Goemans and Williamson (of chapter 6)
was defined as follows: Solve VP and apply randomized rounding. What is the expected
weight of the cut when you apply this algorithm? Show your computation.



Question 4 (6 points total) Consider the following clustering problem. Here, we want to parti-
tion the vertices of a graph into k sets (clusters) so that the total number of edges within a cluster
is minimized.

k-CLUSTERING:
Instance: Graph G = (V,E)
Solution: A partition of the vertices into k sets (clusters): S1,S2, . . . ,Sk ✓V

Cost: The total number of edges that have both endpoints in the same cluster.
Goal: Minimize cost.

(a) (2pt.) Show, by a reduction from the maximum cut problem, that Clustering is NP-hard for
k = 2.

(b) (2pt.) Now show by a reduction from the 3-coloring problem (vertex coloring) that Clus-
tering is NP-hard for k = 3.

(c) (2pt.) Now show by a reduction from the 3-coloring problem that for k = 3 there is no
a-approximation algorithm for k-Clustering for any a � 1.

Question 5 (3 points total) Consider the k-center problem. Remember, an instance is given by
a set of points in a metric space and a number k. For a given set of points in a metric space,
let OPTk be the optimal value for the k-center problem when k centers can be chosen and let
OPTk+1 be the optimal value when k+1 centers can be chosen.

(a) (2pt.) Give (draw) an example (a set of points and distances) for which OPT1 > 3OPT2.

(b) (1pt.) Argue that for any k and a > 1 there exists an instance for which OPTk/OPTk+1 >a .

Question 6 (4 points total) Below is the ILP for the Uncapacitated Facility Location (UFL)
problem.

(ILP) min Z = Â
i2F

fiyi + Â
i2F, j2D

ci jxi j

s.t. Â
i2F

xi j = 1 for all j 2 D,

xi j 6 yi for all i 2 F, j 2 D,

xi j 2 {0,1} for all i 2 F, j 2 D,

yi 2 {0,1} for all i 2 F.

Here, F is the set of facilities and D is the set of clients,

We make the following change to the UFL: In stead of connecting all clients we only need to

connect 3 clients and we need to find those 3 for which the total cost (connection plus opening)

is minimized.



(a) (3pt.) Give an ILP for this problem based on the ILP above.

(b) (1pt.) Argue that an optimal solution can be found in polynomial time.

Question 7 (7 points total)

For this question, we first recap the theory of the Prize-collecting Steiner Tree problem (as
written in the lecture notes).

PRIZE-COLLECTING STEINER TREE:
Instance: G = (V,E) and a cost ce for every edge e 2 E and a penalty pi for every vertex

i 2V . Also given is a root r 2V .
Solution: Tree T containing r. Let V (T ) be the vertices in T

Value: Âe2T ce +Âi2V�V (T ) pi.
Goal: Find a solution of minimum cost.

In words, the goal is to find a tree containing r that minimizes the cost of all edges in the tree
plus the penalty cost for the vertices that are not connected by T . An ILP for the problem is as
follows.

(ILP) min Z = Â
e2E

cexe + Â
i2V

pi(1� yi)

s.t. Â
e2d (S)

xe > yi, for all i,S with i 2 S ✓V � r,

yr = 1,

xe 2 {0,1}, for all e 2 E,

yi 2 {0,1}, for all i 2V.

Algorithm : (0 < a < 1)
Step 1: Solve the LP-relaxation of (ILP) ! x

⇤,y⇤,Z⇤
LP

.
Step 2: Let U = {i | y

⇤
i
> a}. Construct a Steiner tree T on U .

Lemma 1 The connection cost for the Steiner tree T is

Â
e2T

ce 6
2
a Â

e2E

cex
⇤
e
.

Lemma 2 The total penalty cost is

Â
i2V�V (T )

pi 6
1

1�a Â
i2V

(1� y
⇤
i
)pi.



Theorem 1 The algorithm above with a = 2/3 is a 3-approximation algorithm for the Prize-

collecting Steiner Tree problem.

Proof: The sum of connection and penalty cost is at most

2
a Â

e2E

cex
⇤
e
+

1
1�a Â

i2V

(1� y
⇤
i
)pi 6 max

⇢
2
a
,

1
1�a

�
Z
⇤
LP
.

The value max
� 2

a ,
1

1�a
 

is 3 for a = 2/3. Hence, the total cost of the solution of the algorithm
is at most

3Z
⇤
LP

6 3OPT.

(a) (2pt.) If we would apply this algorithm with a = 1/2, then what approximation ratio do
you get? Show your computation. You may refer to the theory above.

(b) (1pt.) In the unrooted version of the problem, no root r is given. That means, any tree is
allowed. Show that if you have a b -approximation algorithm for the rooted version (for
example with b = 3), then you can easily get a b -approximation for the unrooted version.

Now, we make the following adjustment to the Prize-collecting Steiner Tree problem:
In stead of one root r we are given two roots, r1 and r2. The problem is to find two trees T1,T2
with r1 2 T1 and r2 2 T2. The goal is to minimizes the cost of all edges in the two trees plus the
penalty cost for the vertices that are not in any tree.

(c) (2pt.) For some given instance, let OPT(r1,r2) be the optimal value for the Prize-collecting
Steiner Tree problem with roots r1 and r2 and let OPT(r1) be the optimal value for the
standard Prize-collecting Steiner Tree problem with one root r1. Argue that OPT(r1,r2) 
OPT(r1).

(c) (2pt.) Write down an ILP for this problem based on the ILP above. Use variables x
1
e

and x
2
e

and y
1
i

and y
2
i
.


