
Solutions

1. (a) The optimal solution is S1,S2,S4,S5 with value 11+12+14+15 = 52.

(b)

min 11x1 +12x2 +13x3 +14x4 +15x5 +16x6
s.t. x1 + x2 � 1

x1 + x3 � 1
x2 + x3 � 1
x3 + x4 � 1
x3 + x5 � 1
x4 + x5 � 1
x5 + x6 � 1
x1,x2,x3,x4,x5,x6 2 {0,1}.

(c)

max y1 + y2 + y3 + y4 + y5 + y6 + y7
s.t. y1 + x2  11

y1 + y3  12
y2 + y3 + y4  13
y4 + y5 + y6  14
y5 + y7  15
y6 + y7  16
y1,y2,y3,y4,y5,y6,y7 � 0.

(d)

(labeling is not required)

(e) Assume the solution is not feasible. Then, some element i is not covered. But then we can
increase the dual value yi by some small amount and get a better dual solution. However, that
is not possible since the dual solution is optimal.

2. We reduce from the Hamiltonian Path (HP) problem. Assume there exists such an a-
approximation algorithm with a < 3/2. Let G = (V,E) be a graph.

If G has a HP then this is a spanning tree with 2 leaves. The algorithm will return a solution
with at most a ·2 < 3 leaves. (Hence, the solution has exactly 2 leaves. )

If G has no HP then every spanning tree has at least 3 leaves. The algorithm will return a
solution with at least 3 leaves.

Conclusion: Such an algorithm could be used to solve the HP problem in polynomial time. This
is not possible assuming P 6= NP.



3. The main idea is to partition in large and small numbers. Then to enumerate over all possible
solutions for large numbers and to add the small numbers in a greedy way. For example:

Let e > 0 be some constant. Say that a number ai is large if ai � eB and say that it is small
otherwise.

Algorithm: For all subsets S of at most 1/e large numbers do the following:
Add small numbers to S until the the total sum is at least B. Store the solution. (If the total sum
is less than B then do not store this solution.)
From all solutions found, return the best solution.

Running time:
The number of solutions computed is nO(1/e) which is polynomial.

Ratio:
There are at most 1/e large numbers in an optimal solution. So for one of the stored solutions
the set S of large numbers is the same as in the optimal solution. If the optimal solution consists
of only large numbers then we are optimal (since the algorithm will not add small numbers). In
the other case, the total sum is at most B+ eB  (1+ e)OPT.

4. (a)

(ILP) min Z = Â
i2F

fiyi + Â
i2F, j2D

ci jxi j

s.t. Â
i2F

xi j = 1 for all j 2 D,

xi j 6 yi for all i 2 F, j 2 D,

xi j 2 {0,1} for all i 2 F, j 2 D,

yi 2 {0,1} for all i 2 F.

(b) Â
i2F

xi j = 1 is replaced by Â
i2S j

xi j = 1.

(c) Algorithm:

(1) Solve the LP-relaxation.

(2) For each facility i, open it if yi � 1/3.
For each client j, connect j to some i 2 S j for which xi j � 1/3)
(Alternatively, connect each client j to its nearest open facility in S j.)

By (b), xi j � 1/3 for at least one i 2 S j. Then, yi � xi j � 1/3 and i will be opened. So the
solution is feasible

The solution is a 3-approximation since all x- and y-values are multiplied by at most a factor 3.

5. (a) It has exponentially many constraints.

(b) A separation oracle detects if all constraints are satisfied and if not, it will return a constraint
which is not satisfied.



This LP-has separation oracle. Given a solution x⇤ we take these x-values as lengths of the
edges. Now we compute a shortest path from s to t. If the length of this path is at least 1 then
all constraints are satisfied. If it is less than 1 then we found a path for which the constraint is
violated.

(c) The probability that an edge (u,v) is in the cut is equal to |L(u)�L(v)| x⇤uv (by the triangle
inequality). Thus, the expected number of edges in the cut is at most Â

(u,v)2E
x⇤uv = Z⇤.

(d) There are at least two answers possible here. (Answer 2 gives a stronger result than answer
1 but both are fine.)

Answer 1:
Try different values of g and take the best solution found. Note that there are only O(n) different
values of g to try. To see this note that when g increases from 0 to 1 then the corresponding
solution changes at most n times. We take the best of those solutions.

Answer 2:
Form (c) we know that E(|W |)6 Z⇤. Let OPT be the value of a minimum cut. Then, Z⇤ � OPT
since it is an LP-relaxation of the real min-cut problem. Hence, |W | � OPT � Z⇤ for every
choice of g . Combining both inequalities we conclude that |W |= Z⇤ for any choice of g . So for
the derandomized algorithm we can take any g 2 [0,1].

6. (a)

(QP) max 1
2 Â
(i, j)2E

(1� yiy j)

s.t. yi 2 {�1,1} i = 1, . . . ,n.

(b)

(VP) max 1
2 Â
(i, j)2E

(1� vi · v j)

s.t. vi · vi = 1, vi 2 Rn i = 1, . . . ,n.

(c) For example S = {1,2,6}. The number of edges in the cut is 7. This is maximum since for
each of the two triangles we can have at most 2 edges in the cut. So at most 2+2+3 = 7.
(Other optimal solutions are S = {1,3,5}, S = {2,3,4}, S = {1,5,6}, S = {3,4,5}, and S =
{2,4,6}.)

(d) v1 · v2 = v2 · v3 = v1 · v3 =�0.5. Also v4 · v5 = v5 · v6 = v4 · v6 =�0.5.
Further, v1 · v4 = v2 · v5 = v3 · v6 =�1.
In total 1

2 Â
(i, j)2E

(1� vi · v j) =
1
2(6 ·3/2+3 ·2) = 7.5.

(e) The probability that edge (1,2) is in the cut is 2/3. The same holds for the edges
(1,3),(2,3),(4,5),(5,6),(4,6).
The probability that edge (1,4) is in the cut is 1 and the same holds for the edges (2,5) and
(3,6).
Thus, the expected number of edges in the cut is 6 ·2/3+3 = 7.


