
Answers

1. (a) The optimal value is 7.

(b)

min 4x1 +3x2 + x3 +2x4 +2x5
s.t. x1 + x2 � 1

x1 + x3 � 1
x1 + x4 � 1
x1 + x5 � 1
x2 + x4 � 1
x2 + x5 � 1
x1,x2,x3,x4,x5 2 {0,1} .

A solution of value 6: All x-variables equal to 1/2.

(c)

max y12 + y13 + y14 + y15 + y24 + y25
s.t. y12 + y13 + y14 + y15+ 4

y12 + y24 + y25  3
y13  1
y14 + y24  2
y15 + y25  2
y12,y13,y14,y15,y24,y25 � 0

A solution of value 6: All y-variables equal to 1.

(d)

Primal: All x-variables are 1/2. The value is 1/2 times the sum of the degrees, which is |E|.
(The sum of the degrees is exactly twice the number of edges.)

Dual: All y-variables equal to 1. The value is |E|.

Since the value of the LP-solution is the same as the value of the dual-solution, both solutions
are optimal.

2. An ILP:
min Âi2V xi
s.t. Âi2t xi � 2 for all triangles t 2 T.

xi 2 {0,1} for all i 2V.

In the LP-relaxation we take 0  xi  1.

Algorithm: Solve the LP. Add vertex i to solution S if x⇤i � 0.5.

The algorithm runs in polynomial time since the LP can be solved in polynomial time.

The solution is feasible since for each constraint (triangle) there are always at least two x-
variables with value at least 0.5.

The approximation ratio is at most 2 since the x-variables are increased by at most a factor 2.
More precisely: Denote the rounded solution by x̂. That means: x̂i = 1 if x⇤i > 1/2 and x̂i = 0



otherwise. In either case, x̂i 6 2x⇤i . The value of the solution found is

|S|= Â
i2V

x̂i 6 2 Â
i2V

x⇤i = 2Z⇤
LP 6 2Z⇤

ILP = 2OPT.

3. Let Sk be the start time of job k and let pk be its length. Then the length of the schedule is
Sk + pk. We know that Sk  OPT since there is no idle time before time Sk. (Otherwise, the
LPT algorithm would have started job k earlier.) Also pk  Sk/4 since there are at least 5 jobs
on each machine and job k is the smallest on its machine.

Hence, Sk + pk  (5/4)Sk  (5/4)OPT.

4. (a) Given an instance of VC define a pair (ui,vi) for each edge (ui,vi). The optimal value of
1of2 TSP is exactly the optimal value of the VC instance.
(So the optimal value of VC can be computed by computing the optimal value of the 1of2 TSP
instance.)

(b)

Given an instance of VC define a star on n+1 vertices: One vertex has degree n and the other
vertices have degree 1. For each vertex of the graph there is one leaf. For each edge (u,v) of
the graph define a corresponding pair in the tree. See the example. The optimal value of 1of2
TSP is exactly twice the optimal value of the VC instance.
(So the optimal value of VC can be computed by computing the optimal value of the 1of2 TSP
instance.)

5. (a) Algorithm

Step 1: Construct a preemptive schedule using the SRPT rule.
Step 2: Schedule the jobs non-preemptively and as early as possible in the order of the comple-
tion times in the SRPT schedule.

(b)

(LP) min Z =
n
Â
j=1

w jCj

s.t. Cj > r j + p j for all jobs j

Â
j2S

p jCj > 1
2(Â j2S p j)2 for all sets S ✓ {1, . . . ,n}

Algorithm

Step 1: Solve the LP.



Step 2: Schedule the jobs non-preemptively and as early as possible in the order of the
LP-completion times.

6. (a)

min Â
e2E

cexe + Â
i2V

pi(1� yi)

s.t. Â
e2d (S)

xe > yi, for all i,S with i 2 S ✓V � r,

yr = 1,

xe 2 {0,1}, for all e 2 E,

yi 2 {0,1}, for all i 2V.

(b)

min 4x12 +7x13 +7x23 +5(1� y2)+6(1� y3)

s.t. x12 + x23 � y2
x12 + x13 � y2
x12 + x13 � y3
x13 + x23 � y3
y1 = 1,

x12,x13,x23 2 {0,1}

y1,y2,y3 2 {0,1} .

The optimal solution (The value is 4+6 = 10):

(c) Given a candidate solution of an LP, it tells wether or not it satisfies all constraints. If not,
then it returns a constraint that does not hold.

(d) For each vertex i, compute the value of a minimum capacity cut between r and i, where the
x-values are the capacities. If for some i the minimum cut has value less than yi then a violated
constraint is found. If the value is at least yi for all i then the solution is feasible.

A minimum cut can be found in polynomial time and we need to compute at most n�1 of them.



7. (a) For i = 1,2,3:

Cut i: All vertices with color i on one side and the other two colors on the other side.

Each edge is in exactly two of those cuts. So in total, the 3 cuts contain exactly twice the number
of edges. At least one of the cuts contains at least 2/3 of the edges.

(b)

(VP) min l

s.t. vi · v j 6 l , for all (i, j) 2 E
vi · vi = 1,vi 2 Rn for all i 2V.

Claim: The optimal value of the VP is at most �0.5.
Proof: See figure. If we assign to each vertex of color k (for k = 1,2,3) the vector as in the
figure, then the value of the solution is cos(2p/3) =�0.5. So the optimal value is at most �0.5.

Algorithm: Solve the VP. Then take a unit vector r at random. One side of the cut are all
vertices i for which vi · r � 0. The other side are all vertices i for which vi · r < 0.

The probability that an edge (i, j) is in the cut is exactly ji j/p , where ji j is the angle between
vectors vi and v j in the optimal VP-solution. From vi · v j  �0.5 it follows that ji j � 2p/3.
Hence, the probability that an edge (i, j) is in the cut is at least 2/3. In total, the expected
number of edges in the cut is at least (2/3)|E|.


