Answers

1. Consider the following instance of the unweighted set cover problem. The elements are $E = \{1, 2, 3, 4, 5\}$ and the subsets are $S_1 = \{2, 3, 4, 5\}$, $S_2 = \{1, 3, 4, 5\}$, $S_3 = \{1, 2, 4, 5\}$, $S_4 = \{1, 2, 3, 5\}$, and $S_5 = \{1, 2, 3, 4\}$.

The optimal value is 2.

(b) LP-solution: $x_1 = x_2 = x_3 = x_4 = x_5 = 1/4$. The LP-value is 5/4. (Other solutions are possible.)

 $x_1, x_2, x_3, x_4, x_5 \in \{0, 1\}$

(c)

$$\max y_1 + y_2 + y_3 + y_4 + y_5$$

$$s.t. \quad y_2 + y_3 + y_4 + y_5 \le 1$$

$$y_1 + y_3 + y_4 + y_5 \le 1$$

$$y_1 + y_2 + y_4 + y_5 \le 1$$

$$y_1 + y_2 + y_3 + y_5 \le 1$$

$$y_1 + y_2 + y_3 + y_4 \le 1$$

$$y_1, y_2, y_3, y_4, y_5 \ge 0.$$

2. (a) Let G = (V, E) be the graph, then the ILP is

$$\begin{aligned} & \min & & \sum_{i \in V} x_i \\ & s.t. & & x_i + x_j \geq 1 & \text{for all } (i,j) \in E. \\ & & x_i \in \{0,1\} & \text{for all } i \in V. \end{aligned}$$

(b) Take the complete graph on n vertices. The minimum vertex cover has value n-1. The solution $x_i = 1/2$ for all $i \in V$ is feasible for the LP and has value n/2. So $OPT_{LP} \le n/2$ and

$$OPT_{VC}/OPT_{LP} > (n-1)/(n/2) = 2 - 2/n$$
.

(c) Let G = (V, E) be the graph, then the ILP is

$$\begin{array}{ll} \max & \sum_{i \in V} x_i \\ s.t. & x_i + x_j \leq 1 \quad \text{ for all } (i,j) \in E. \\ & x_i \in \{0,1\} \quad \text{ for all } i \in V. \end{array}$$

(d) Take the complete graph on n vertices. The maximum independent set has value 1. The solution $x_i = 1/2$ for all $i \in V$ is feasible for the LP and has value n/2. So $OPT_{LP} \ge n/2$ and

$$OPT_{LP}/OPT_{IS} \ge (n/2)/1 = n/2.$$

3. Reduce from the Hamiltonian Cycle problem. Given an instance G = (V, E) of HC, form an instance of TSP by defining $c_{ij} = 1$ for all edges $(i, j) \in E$ and $c_{ij} = M$ for all $(i, j) \notin E$, where M is a large enough number. For example, $M = \alpha n$ is large enough. If there is no HC in G, then any TSP should use at least one of the edges of length M and the length of the optimal TSP tour is then at least $M + n - 1 \ge \alpha n + n - 1 > \alpha n$ (for $n \ge 2$).

Assume that there does exist some constant factor α -approximation algorithm. Let ALG be the value of the algorithm's solution when we apply it to the TSP instance. Then,

If *G* has a HC
$$\Rightarrow$$
 OPT_{TSP} = $n \Rightarrow$ ALG $\leq \alpha n$.
If *G* has no HC \Rightarrow OPT_{TSP} $\geq M + n - 1 > \alpha n \Rightarrow$ ALG $> \alpha n$.

We conclude that G has a HC if and only if $ALG \le \alpha n$. Hence, we can use the algorithm to solve the HC problem. However, that problem is NP-complete. So no such α -approximation algorithm can exist.

(LP) min
$$Z = \sum_{j=1}^{n} w_j C_j$$

s.t. $C_j \ge r_j + p_j$ for all jobs j

$$\sum_{j \in S} p_j C_j \ge \frac{1}{2} \left(\sum_{j \in S} p_j \right)^2$$
 for all sets $S \subseteq \{1, \dots, n\}$

Remark 1: The constraint $C_j \ge 0$ is not needed since it is implied by the first constraint but it is OK to add the constraint.

Remark 2: In the second constraint one could add $\frac{1}{2}\sum_{j\in S}p_j^2$ on the right side.

- **(b)** The optimum value is 2+3+4+5+6=20.
- (c) 5 (first constraint) $+2^5$ (second constraint) = 5+32=37 constraints. (Better: It is 36 since $S=\emptyset$ gives no constraint.)
- (d) next page:

The first constraint is clearly satisfied : $r_j + p_j = 2$ and $C_j > 2$ for all j.

For the second constraint we first order by completion time: $C_5 < C_4 < C_3 < C_3 < C_1$. We only need to verify it for 5 sets:

$$S = \{5\}:$$
 $2.8 \ge \frac{1}{2}(1)^2$ (1)

$$S = \{4,5\}:$$
 $2.9 + 2.8 \ge \frac{1}{2}(2)^2$ (2)

$$S = \{3,4,5\}: \quad 3.0 + 2.9 + 2.8 \ge \frac{1}{2}(3)^{2}$$

$$S = \{2,3,4,5\}: \quad 3.1 + 3.0 + 2.9 + 2.8 \ge \frac{1}{2}(4)^{2}$$

$$(4)$$

$$S = \{2, 3, 4, 5\}: \quad 3.1 + 3.0 + 2.9 + 2.8 \ge \frac{1}{2}(4)^2$$
 (4)

$$S = \{1, 2, 3, 4, 5\}: 3.2 + 3.1 + 3.0 + 2.9 + 2.8 \ge \frac{1}{2}(5)^2.$$
 (5)

All these are satisfied so the solution is feasible. (If you included $\frac{1}{2}\sum_{j\in S}p_j^2$ in the second constraint of the LP then the solution is also feasible.

5. (a) Algorithm: Set each variable independently to True with probability 1/2. For each clause, the probability that it is satisfied is: $1 - (1/2)^{l_j} \ge 1/2$, where l_i is the number of literals in the clause. If m is the number of clauses, then the expected number of clauses satisfied is at least $m/2 \ge \text{OPT}/2$.

(b)
$$3/4 + 3/4 + 3/4 + 3/4 + 7/8 = 3 + 7/8$$

(c) If n is the number of variables and m is the number of clauses, then the LP is

(LP) max
$$Z = \sum_{j=1}^{m} w_j z_j$$

s.t. $\sum_{i \in P_j} y_i + \sum_{i \in N_j} (1 - y_i) \geqslant z_j$ for all $j = 1 \dots m$,
 $0 \le y_i \le 1$ for all $i = 1 \dots n$,
 $0 \le z_j \le 1$ for all $j = 1 \dots m$.

Remark: The $y_i \le 1$ can be removed since it is not needed.

6. (a)

(QP) max
$$\frac{1}{2} \sum_{(i,j)} (1 - y_i y_j) w_{ij}$$

s.t. $y_i \in \{-1,1\}$ $i = 1,...,n$.

Remark: It is also fine if you give the unweighted form $(\max \frac{1}{2} \sum_{(i,j) \in E} (1 - y_i y_j))$, or to write $y_i^2 = 1$ in stead of $y_i \in \{-1, 1\}$.

(b)
$$(\text{VP}) \ \text{max} \quad \frac{1}{2} \sum_{(i,j)} (1 - v_i \cdot v_j) w_{ij}$$

$$s.t. \quad v_i \cdot v_i = 1, \ v_i \in \mathbb{R}^n \quad i = 1, \dots, n.$$

- (c) There is a cut of 6 edges and that is the maximum value since for each triangle at most two edges can be in the cut and there are 3 triangles that do not share any edges.
- (d) Take 3 vectors with an angle of $2\pi/3$ between each pair. Assign each vertex to a vector such that the angle is $2\pi/3$ for any pair of vertices that are endpoint of an edge. (This can be done since the graph is 3-colorable.)

The value of this solution is $\frac{1}{2} \sum_{(i,j) \in E} (1 - v_i \cdot v_j) = \frac{1}{2} \cdot 9 \cdot (1 - -0.5) = 6.75$.