
Solutions:

(1)(a)

(b)

max Z = y1 + y2 + · · ·+ y10
s.t. y1 + y2 + y3 + y4 + y5 6 2

y6 + y7 + y8 + y9 + y10 6 2
y1 + y6 6 1
y2 + y7 6 1
y3 + y8 6 1
y4 + y9 6 1
y5 + y10 6 1
y1,y2, . . . ,y10 > 0.

(c) Initially: yi = 0 for all i. Then the y-variables are increased one by one. The solution
that we get depends on the order that we take. Here, we take order y1,y2, ...,y8. So start with
increasing y1. When y1 = 1, the constraint y1 + y6  1 becomes tight. So set y1 = 1 and add
the corresponding set S3 to the solution. Next, increase y2. When y2 = 1 then the constraints
for S4 and S1 becomes tight (since now y1 + y2 = 2.) So add S1 and S4 to the solution. The next
variable that we can still increase is y8. Set y8 = 1 and add S5 to the solution. Then, set y9 = 1
and add S6 and S2 to the solution. The solution obtained is {S1,S2,S3,S4,S5,S6} and the value
is w1 +w2 +w3 +w4 +w5 +w6 = 8.

(2)(a) (See book or lecture notes.) Let k be the job that completes last and let sk be its start
time. Then all machines are busy before time sk. So sk  Â j p j/m  OPT. Also, pk  OPT.
The length of the schedule is

sk + pk Â
j

p j/m+ pk  2OPT.

(b) First we prove the hint. Let k be job that completes last. By definition of the algorithm, any
job either starts on a machine directly after another job finishes on that machine or it starts at
its release time. So idle time between rk and sk can only occur when som job j < k starts at its
release time r j > rk. But this cannot happen since r j  rk for all j  k.

Now we use the hint.Since all machines are busy between rk and sk we have sk�rk Â j p j/m
OPT. Also, rk + pk  OPT since job k cannot complete before this time. The length of the
schedule is

sk + pk = (sk� rk)+(rk + pk) OPT+OPT = 2OPT.

(3) (a) The DP is a simplified version of the DP for knapsack. Let A j be the set of all b such
that there is a subset of the first j items that add up to b. Then, A1 = {0,s1}. And for j > 2 we
find A j as follows:
A j A j�1 and for any b 2 A j�1, add b+ s j to A j if b+ s j 6 B.
The optimal value is given by the largest value in An

(b) Say that an item i is large if si > eB. There are at most 1/e large items in the optimal
solution. This gives n1/e possible combinations of large items. For each one, add the small jobs
in a greedy way. In one of these rounds, the algorithm chooses the same large items as OPT. If
all small items fit then ALG = OPT. Otherwise, ALG > B� eB = (1� e)B > (1� e)OPT.
(NB. Note that no rounding of values is needed here. We just try all combinations of large
items.)

(4) See the figure. Given an instance E,S1, . . . ,Sm of the (unweighted) set cover problem we

model it as a UFL problem as follows. For each set S j we define one facility with opening cost
f j = 1. For each element ei 2 E we define one client i. The cost for connecting client i with
facility j is taken 0 if ei 2 S j and infinite otherwise (or some very large number). If there is a
set cover of value k, that means all elements can be covered with k sets, then there is a solution
to the defined instance of the UFL problem with value k as well: simply open the facilities that
correspond to the sets in the set cover. The converse is also true: if there is a solution to the
UFL problem of value k then there is a set cover of size k. Hence we showed that the optimal
value for the set cover instance is k if and only if the optimal value of the UFL instance is k.

So any f (|D|)-approximation algorithm for facility location (without triangle inequality) im-
plies an f (n)-approximation algorithm for set cover. Since set cover cannot be approximated
better than O(logn), facility location without triangle inequality cannot be approximated better
than O(log |D|).

(5)

(a)Assign uniformly at random to the sets. The probability that e is in the cut is exactly (k�
1)/k. So the expected total weight of the edges in teh cut is at least (k� 1)/k time the total
weight of the edges, which is at least (k�1)/k times the optimal value.

(b) Use this approach: First, solve the VP that was used for the 3-coloring problem. This gives
a set of vectors v1, . . . ,vn. We know that the optimal value is at most �0.5. That means, for any
edge (i, j), the angle between the two vectors vi and v j is at least 2p/3. Now take two random
hyperplanes. This gives a partition in 4 sets. The probability that an edge has endpoints in
different sets is at least 1� (1/3)2 = 8/9. Hence, the expected total weight of the cut is at least
8/9 times the total weight of the edges, which is at least 8/9 times OPT.

(c) Let k = 2q. Take q hyperplanes. Then for any edges of the graph, the probability that it is
not in the cut is at most (1/3)q = ((1/2)(log2 3)q = k� log2 3. Hence, the expected total weight of
the cut is at least k� log2 3 times the total weight of the edges.

(6) This is just a set cover problem and we can use LP-rounding. Take a variable yi for each
boolean variable xi. Then the ILP becomes

min Z = Âyi
s.t. Â

i2Cj

yi > 1 for each clause Cj

yi 2 {0,1} for each i

Now solve the LP-relaxation and round to 1 if yi > 1/3 and round to zero otherwise. Then the
solution is feasible since at least one of the yi’s is rounded to 1 in each constraint. The total
value is increased by at most a factor 3.

