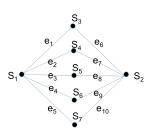
Solutions:

(1)(a)



(b)
$$\max \quad Z = y_1 + y_2 + \dots + y_{10}$$
s.t.
$$y_1 + y_2 + y_3 + y_4 + y_5 \leqslant 2$$

$$y_6 + y_7 + y_8 + y_9 + y_{10} \leqslant 2$$

$$y_1 + y_6 \leqslant 1$$

$$y_2 + y_7 \leqslant 1$$

$$y_3 + y_8 \leqslant 1$$

$$y_4 + y_9 \leqslant 1$$

$$y_5 + y_{10} \leqslant 1$$

$$y_1, y_2, \dots, y_{10} \geqslant 0.$$

- (c) Initially: $y_i = 0$ for all i. Then the y-variables are increased one by one. The solution that we get depends on the order that we take. Here, we take order $y_1, y_2, ..., y_8$. So start with increasing y_1 . When $y_1 = 1$, the constraint $y_1 + y_6 \le 1$ becomes tight. So set $y_1 = 1$ and add the corresponding set S_3 to the solution. Next, increase y_2 . When $y_2 = 1$ then the constraints for S_4 and S_1 becomes tight (since now $y_1 + y_2 = 2$.) So add S_1 and S_4 to the solution. The next variable that we can still increase is y_8 . Set $y_8 = 1$ and add S_5 to the solution. Then, set $y_9 = 1$ and add S_6 and S_2 to the solution. The solution obtained is $\{S_1, S_2, S_3, S_4, S_5, S_6\}$ and the value is $w_1 + w_2 + w_3 + w_4 + w_5 + w_6 = 8$.
- (2)(a) (See book or lecture notes.) Let k be the job that completes last and let s_k be its start time. Then all machines are busy before time s_k . So $s_k \leq \sum_j p_j/m \leq \text{OPT}$. Also, $p_k \leq \text{OPT}$. The length of the schedule is

$$s_k + p_k \le \sum_j p_j/m + p_k \le 2$$
OPT.

(b) First we prove the hint. Let k be job that completes last. By definition of the algorithm, any job either starts on a machine directly after another job finishes on that machine or it starts at its release time. So idle time between r_k and s_k can only occur when som job j < k starts at its release time $r_j > r_k$. But this cannot happen since $r_j \le r_k$ for all $j \le k$.

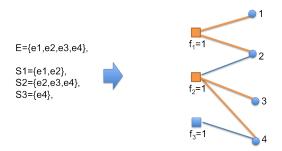
Now we use the hint. Since all machines are busy between r_k and s_k we have $s_k - r_k \le \sum_j p_j/m \le$ OPT. Also, $r_k + p_k \le$ OPT since job k cannot complete before this time. The length of the schedule is

$$s_k + p_k = (s_k - r_k) + (r_k + p_k) \le OPT + OPT = 2OPT.$$

(3) (a) The DP is a simplified version of the DP for knapsack. Let A_j be the set of all b such that there is a subset of the first j items that add up to b. Then, $A_1 = \{0, s_1\}$. And for $j \ge 2$ we find A_j as follows:

 $A_j \leftarrow A_{j-1}$ and for any $b \in A_{j-1}$, add $b + s_j$ to A_j if $b + s_j \le B$. The optimal value is given by the largest value in A_n

- (b) Say that an item i is large if $s_i \ge \varepsilon B$. There are at most $1/\varepsilon$ large items in the optimal solution. This gives $n^{1/\varepsilon}$ possible combinations of large items. For each one, add the small jobs in a greedy way. In one of these rounds, the algorithm chooses the same large items as OPT. If all small items fit then ALG = OPT. Otherwise, ALG $\ge B \varepsilon B = (1 \varepsilon)B \ge (1 \varepsilon)$ OPT. (NB. Note that no rounding of values is needed here. We just try all combinations of large items.)
- (4) See the figure. Given an instance E, S_1, \dots, S_m of the (unweighted) set cover problem we



model it as a UFL problem as follows. For each set S_j we define one facility with opening cost $f_j = 1$. For each element $e_i \in E$ we define one client i. The cost for connecting client i with facility j is taken 0 if $e_i \in S_j$ and infinite otherwise (or some very large number). If there is a set cover of value k, that means all elements can be covered with k sets, then there is a solution to the defined instance of the UFL problem with value k as well: simply open the facilities that correspond to the sets in the set cover. The converse is also true: if there is a solution to the UFL problem of value k then there is a set cover of size k. Hence we showed that the optimal value for the set cover instance is k if and only if the optimal value of the UFL instance is k.

So any f(|D|)-approximation algorithm for facility location (without triangle inequality) implies an f(n)-approximation algorithm for set cover. Since set cover cannot be approximated better than $O(\log n)$, facility location without triangle inequality cannot be approximated better than $O(\log |D|)$.

- (5)
- (a) Assign uniformly at random to the sets. The probability that e is in the cut is exactly (k-1)/k. So the expected total weight of the edges in teh cut is at least (k-1)/k time the total weight of the edges, which is at least (k-1)/k times the optimal value.
- (b) Use this approach: First, solve the VP that was used for the 3-coloring problem. This gives a set of vectors v_1, \ldots, v_n . We know that the optimal value is at most -0.5. That means, for any edge (i, j), the angle between the two vectors v_i and v_j is at least $2\pi/3$. Now take two random hyperplanes. This gives a partition in 4 sets. The probability that an edge has endpoints in different sets is at least $1 (1/3)^2 = 8/9$. Hence, the expected total weight of the cut is at least 8/9 times the total weight of the edges, which is at least 8/9 times OPT.

- (c) Let $k=2^q$. Take q hyperplanes. Then for any edges of the graph, the probability that it is not in the cut is at most $(1/3)^q=((1/2)^{(\log_2 3)q}=k^{-\log_2 3}$. Hence, the expected total weight of the cut is at least $k^{-\log_2 3}$ times the total weight of the edges.
- (6) This is just a set cover problem and we can use LP-rounding. Take a variable y_i for each boolean variable x_i . Then the ILP becomes

$$\begin{array}{ll} \min & Z = \sum y_i \\ s.t. & \sum_{i \in C_j} y_i \geqslant 1 \quad \text{ for each clause } C_j \\ & y_i \in \{0,1\} \quad \text{ for each } i \end{array}$$

Now solve the LP-relaxation and round to 1 if $y_i \ge 1/3$ and round to zero otherwise. Then the solution is feasible since at least one of the y_i 's is rounded to 1 in each constraint. The total value is increased by at most a factor 3.