
Exam Advanced Algorithms. 16-12-2014.

• It is not allowed to use any books, notes, calculator ... just pen and paper.

• Keep your answers short. Just give the main idea. Notation is not so important.

• There are many questions but most have a really short answer.

• The table shows the maximum number of points per sub question. Although all
questions have the same weight, some are clearly easier than others.

1a 1b 1c 1d 2a 2b 2c 3a 3b 4a 4b 4c 4d 5a 5b 6a 6b 6c ∑

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 18

In your answers, you may use the following facts.

• The Hamiltonian Cycle problem is NP-complete.

• In a complete graph with costs (weights) on the edges, a perfect matching

of minimum cost can be found in polynomial time.

• Linear programs can be solved in polynomial time.

• A minimum spanning tree can be found in polynomial time.

• The shortest path between points s and t in a network (a graph with lengths

on the edges) can be found in polynimial time.

• cos(2π/3) =−0.5.

1. This question is about the unweighted set cover problem of chapter 1. The

instance below has 7 elements and 6 sets.

(a) Give an optimal set cover for the instance below. (Which sets do you take?)

(b) Write down the ILP for set cover for the given example.

(c) For this example, give a solution to the LP-relaxation which has value strictly

smaller than the value of the optimal set cover.

(d) In the given example, each element is in exactly two sets. It can therefore also

be seen as a vertex cover problem. Draw the corresponding graph.
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2. This question is about the weighted set cover problem. An instance is given by

a set of elements (items) E = {e1, . . . ,en}, subsets S1, . . . ,Sm ⊆ E, and a weight w j

for all j ∈ {1, . . . ,m}.

(a) Give the LP dual for the weighted set cover problem. Denote the variables by

yi (i = 1, . . . ,n).

Set cover algorithm:

Step 1: Solve the dual.

Step 2: For each j, take set S j in the solution if the dual constraint for S j is tight

(meaning we have equality).

For questions (b) and (c) you may use the following notation. Denote the optimal

dual solution by y∗1, . . . ,y
∗
n and denote the optimal primal and optimal dual val-

ues by Z∗
LP and Z∗

D. Let I be the indices of the sets in the solution given by the

algorithm: I = { j | S j in solution}.

(b) Argue that the algorithm above always returns a feasible set cover.

(c) Assume that each element appears in at most f sets, for some integer f .

Argue that the algorithm is an f -approximation algorithm.

3.
TSP (SYMMETRIC):

Instance: Complete graph with a cost ci j for every pair of points i, j.

Solution: A cycle that goes through each point exactly once.

Value: The length (sum of the edge costs) of the cycle.

Goal: Find a solution of minimum cost.

(a) Let α ! 1 be some constant. Prove that there is no polynomial time α-

approximation algorithm for the non-metric TSP, unless P=NP.

Now, consider the metric-TSP, that means, ci j " cik + ck j for all i, j,k.

(b) Describe a 3/2-approximation algorithm for metric TSP and prove the ratio

3/2. (Just give the main idea/arguments.)
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4. In the minimum s, t-cut problem we are given a graph G = (V,E) and s, t ∈ V

and we need to find a smallest set of edges W ⊆ E such that removing W separates

s from t (that means s and t end up in different components). You probably know

that the problem can be solved by a max flow algorithm. In this exercise we use a

different approach to solve it.

Let P be the set all simple paths from s to t in the graph. (A path is simple if no

vertex is visited more than once by the path.) For every edge (u,v) ∈ E introduce

a variable xuv. The following ILP is an exact formulation of the minimum s, t-cut

problem.
(ILP)min Z = ∑

(u,v)∈E

xuv

s.t. ∑
(u,v)∈P

xuv ! 1 for all P ∈ P.

xuv ∈ {0,1} for all (u,v) ∈ E.

(a) In the LP-relaxation, we take xuv ! 0 in stead of xuv ∈ {0,1}. Explain why

it is not immediately clear that the relaxation can be solved in polynomial

time.

The LP-relaxation can be solved in polynomial time by using the ellipsoid method

together with a separation oracle.

(b) Describe what a separation oracle does in general for an LP. Further, show

that this LP-relaxation has a polynomial time separation oracle.

Let x∗ be an optimal solution for the LP-relaxation and let Z∗ be its value. Now,

for every edge (u,v) ∈ E define its length as x∗uv. Using these lengths, let L(v) be

the distance from s to v in G, for every v ∈ V . In other words, L(v) is the length

of the shortest path from s to v in G. For any γ ∈ [0,1[, define the set of vertices

Sγ = {v ∈V | L(v) " γ}, that means, Sγ is the set of vertices at distance at most γ
from s.

Min cut algorithm

Step 1: Solve the LP-relaxation → x∗,Z∗ .

Step 2: Take γ ∈ [0,1[ uniformly at random. → Sγ .

Step 3: Return the set of edges that have exactly one endpoint in Sγ . Denote this

set by W .

(c) Show that W has at most Z∗ edges in expectation: E(|W |)" Z∗.

(d) Explain how the algorithm can be derandomized.

(This question can be answered even if you did not find an answer for (c). )

One more page −→
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5.

Figure 1: (For question 5) The instance in this example is given by n = 8, C =
{c1,c2.c3} with c1 = (1,6), c2 = (2,4), and c3 = (3,8). Left is a solution with

value 3. Right is an optimal solution with value 2.

The following problem arises in telecommunications networks, and is known as

the SONET ring loading problem. The network consists of a cycle on n nodes,

numbered 1 through n clockwise around the cycle. Some set C of calls is given;

each call is a pair (i, j) originating at node i and destined to node j. The call can

be routed either clockwise or counterclockwise around the ring. The load Le on

edge e of the cycle is the number of calls routed through edge e. The value of the

solution is the maximum over all n loads: maxe Le. The objective is to route the

calls so as to minimize the maximum load on the network.

(a) Give a (mixed) ILP for the SONET ring loading problem. Use the following

notation: Take a binary decision variable xi for each call ci ∈C, where xi = 1

iff call ci is routed clockwise. For each edge e, let Ce be the set of (indices

of) the calls which route through e if routed clockwise. For example, Ce =
{1,3} for edge e = (4,5) in the example above.

(b) Describe a 2-approximation algorithm and give a proof for this.

6.

(a) Give the vector program relaxation for the graph 3-coloring problem of Sec-

tion 6.5.

(b) One can show that the optimal solution of the vector program has value at

most −0.5 if the graph is 3-colorable. Give a 3-colorable graph with exactly

5 edges and sketch a solution to the vector program of value at most −0.5.

(c) Now suppose you apply one iteration of the algorithm of section 6.5 to your

graph with your vector program solution given in (b). More precisely, take

t = 2 hyperplanes at random. The two hyperplanes divide the solution space

into 4 regions. (The probability that the two hyperplanes are the same is

zero). Let each region correspond with a color. Hence, this gives a coloring

of the vertices with (at most) 4 colors. Show that the probability that the

coloring is feasible (i.e., no two adjacent vertices get the same color) is at

least 4/9.

−−−−−−−−−−−−−−
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