
Solutions

1a For example, 1,2,4. (Other possibilities: 2,3,4 and 1,3,4). Optimal value is 3.

1b min x1 + x2 + x3 + x4 + x5 + x6

s.t. x1 + x2 ! 1

x2 + x3 ! 1

x1 + x3 ! 1

x2 + x4 ! 1

x3 + x4 ! 1

x4 + x5 ! 1

x4 + x6 ! 1

xi ∈ {0,1} i=1,2,. . . , 6.

1c For example, (x1,x2,x3,x4,x5,x6) = (1
2 ,

1
2 ,

1
2 ,1,0,0) with value 2.5.

1d

2a
(D) max Z =

n

∑
i=1

yi

s.t. ∑
i:ei∈S j

yi " w j for all j = 1, . . . ,m

yi ! 0 for all i = 1, . . . ,n.

2b Assume that ei is not covered. Then, none of the constraints j with ei ∈ S j is

tight. But then we can increase y∗i by a small positive value and obtain a feasible

solution with higher value. This contradicts that y∗ is optimal.

2c The value of the solution found is

∑
j∈I

w j = ∑
j∈I

∑
i:ei∈S j

y∗i " f
n

∑
i=1

y∗i = f Z∗
D " f Z∗

LP " f OPT.

The first equality above follows since only tight sets S j were picked. The first

inequality follows from the fact that each of the y∗i ’s appears at most f times in the

summation. The second inequality follows from weak duality. (Also, the algorithm

runs in polynomial time and in (b) we already showed that any solution is feasible.)

3a Follows by a reduction from the Hamiltonian Cycle problem. Assume we have

an α-approximation algorithm ALG. Given an instance G = (V,E) define an in-

stance of TSP by taking

ci j = 1 if (i, j) ∈ E and ci j = M if (i, j) /∈ E,

where M is a large number. Let OPT and ALG denote the optimal value and

algorithm’s value for the TSP instance. Then, the following implications hold.

G has a Hamiltonian cycle ⇒ OPT = n ⇒ ALG " αn.
G has no Hamiltonian cycle ⇒ OPT ! n−1+M ⇒ ALG ! n−1+M.

Choose M such that αn < n−1+M. For example, M = αn.
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3b This is done by Christofides’ algorithm: (1) Construct a minimum spanning

tree T . (2) Find a mincost perfect matching M of the odd-degree vertices of T . (3)

Find an Euler tour in the graph with edges T ∪M. (4) Shortcut the tour.

Claim 1: length of T " OPT: If we delete an edge from the optimal tour then we

get a path connecting all vertices. Since this is also a tree, the minimum spanning

tree has length at most OPT.

Claim 2: length of M " OPT/2: Let O be the odd degree vertices in T . Shortcut

the optimal tour on O. This tour consists of exactly two perfect matchings on O.

Hence, the length (cost) of M is at most OPT/2.

Claim 1+2 ⇒ ALG " OPT+OPT/2.

4a The number of constraints is not polynomially bounded. There may be expo-

nentially many simple s, t paths.

4b Given en LP-solution x, a separation oracle either states (correctly) that x is

feasible or it gives us a violated constraint. For the given LP-relaxation, a sep-

aration oracle should tell wether or not there is a simple s, t path P for which

∑(u,v)∈P xuv < 1. This can be done by computing the shortest path from s to t using

x for the distances of the edges. If the shortest path has length at least 1 then the

solution is feasible and otherwise the shortest path P will be a violated constraint.

4c Consider an edge (u,v) and assume L(u)" L(v). Then,

Pr( edge (u,v) in cut ) = Pr(L(u)" γ < L(v)) " L(v)−L(u)" x∗uv.

The last inequality follows since L(v) is at most the length of the path from s to v

via u: L(v)" L(u)+ x∗uv. Hence,

E[|W |] = ∑
(u,v)∈E

Pr( edge (u,v) in cut )" ∑
(u,v)∈E

x∗uv = Z∗.

Although not asked for, you also get points if you showed that W is indeed a feasi-

ble cut. Since L(s) = 0 and L(t)≥ 1 it follows from the definition of Sγ that s ∈ Sγ

and t /∈ Sγ for any γ ∈ [0,1[. So W is a feasible cut.

4d Since Z∗ is the optimal value of the relaxation we have Z∗ " OPT. With

question 4c this implies E[|W |] " OPT. Since W is always a feasible cut we have

|W | ≥ OPT for any choice of γ . Together with E[|W |] " OPT this implies that

W = OPT for any choice of γ . Therefore, the derandomized algorithm can fix any

value of γ . For example, γ = 0.

N.B. It is also fine if you answered here that the derandomized algorithm simply

tries many different values of γ and then takes the best solution. But do note

here that it is enough to try only the values L(v) for all v ∈ V , which are at most

n different values. It is not OK if you answered ’by the method of conditional

expectations’ without any further explanation.

5a
min Z

s.t. ∑
i∈Ce

xi + ∑
i/∈Ce

(1− xi)" Z for all edges e

xi ∈ {0,1} for all calls ci

Z ! 0 (not really needed)
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5b Algorithm:

(1) Solve the LP-relaxation in which xi ∈ {0,1} is replaced by 0 " xi " 1.

(2) Route ci clockwise if x∗i ! 1/2 and route it counter clockwise otherwise.

For the proof it is convenient to define the value yi = 1 if x∗i ! 1/2 and yi = 0 other

wise. Then, yi " 2x∗i and 1− yi " 2(1− x∗i ). The load on an edge e is

∑
i∈Ce

yi + ∑
i/∈Ce

(1− yi)" ∑
i∈Ce

2x∗i + ∑
i/∈Ce

2(1− x∗i ) = 2Z∗ " 2OPT.

Other algorithms are possible. For example, always choosing the shortest of the

two directions is also a 2-approximation.

6a For graph G = (V,E) with |V |= n, the relaxation is

min λ
s.t. vi · v j " λ for all (i, j) ∈ E

vi · vi = 1 for all i ∈V

vi ∈ Rn for all i ∈V.

6b For example the graph left. (Actually, any graph with 5 edges is OK here.) The

solution (right) has value −0.5. Another example (C5) is given in the lecture notes.

6c For any edge (i, j) and one random hyperplane:

Pr(vi and v j are not separated )"
π/3

π
= 1

3 .

Thus, Pr(i and j get the same color)

= Pr(vi and v j not separated be either hyperplane )" 1
3

1
3 = 1

9 .

⇒ Pr(endpoints of some edge get the same color )" 5 · 1
9 = 5

9 .

⇒ Pr(coloring is feasible )! 1− 5
9 = 4

9 .

−−−−−−−−−−−−−−−−−−−−−−−−−−−
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