Faculty of Sciences
VU University Amsterdam

Coding and Cryptography Exam 12:00-14:45 21-10-2015

Note

- (1) This exam consists of 8 problems.
- (2) Calculators, notes, books, etc., may not be used.
- (3) Justify your answers!
- (4) Throughout this exam, $K = \{0, 1\}$.

Problems

- (1) (a) Does there exist a code in K^8 with 7 codewords and distance 5? Explain your answer.
 - (b) Let C be a linear (8,3,2)-code in K^8 . We leave out the last position of each codeword, obtaining a linear code C' in K^7 . Give the possible parameters (n', k', d') of C', and show by means of examples they all occur.
- (2) Let X be a matrix with as rows all the elements in K^7 of weight 3, and let $H = \begin{bmatrix} I \\ X \end{bmatrix}$. We view H as the check matrix of a linear code C.
 - (a) Determine de distance of C.
 - (b) Compute how many received words for C can be decoded under IMLD where we correct any error of weight at most 1. Do not simplify your answer to a number.
- (3) Let $F = GF(2^3)$ be constructed using the primitive irreducible polynomial $1 + x + x^3$ and let β be the class of x.
 - (a) Find a parity check matrix H (with entries in K) for the cyclic Hamming code C of length 7 with generator polynomial $m_{\beta}(x)$.
 - (b) Decode the received word w = 1010000 for this code.
 - (c) To each $a_0a_1 ldots a_6$ in C corresponds the polynomial $a(x) = a_0 + a_1x + \cdots + a_6x^6$. We then consider $D \subseteq C$ consisting of all a(x) in C with a(1) = 0. What are the dimension and distance of D?
- (4) (a) Factorize $f(x) = x^6 + x^5 + x + 1$ into irreducibles in K[x]. (You may use without proof which polynomials in K[x] are irreducible for degrees 1, 2 and 3.)
 - (b) How many divisors in K[x] does f(x) have?
- (5) (a) Compute the number of idempotents I(x) modulo $1 + x^{21}$ that have degree at most 17.
 - (b) For the idempotent of degree 12 with constant term 1, find the generator polynomial g(x) of the corresponding cyclic linear code C in K^{21} .

In problems (6) and (7), $GF(2^4)$ is constructed as K[x] modulo $1+x^3+x^4$ and β is the class of x, so $1 + \beta^3 + \beta^4 = 0$. Moreover, β is primitive, and the table for its powers is:

0000	-	1110	β^7
1000	1	0111	β^8
0100	β	1010	β^9
0010	β^2	0101	β^{10}
0001	β^3	1011	β^{11}
1001	β^4	1100	β^{12}
1101	β^5	0110	β^{13}
1111	β^6	0011	β^{14}

- (6) Let β and $GF(2^4)$ be as in the table, let $\alpha = \beta^5 + \beta^{12}$, and let $m_{\alpha}(x)$ be the minimal polynomial of α in K[x].
 - (a) Determine the degree of $m_{\alpha}(x)$ in an efficient way.
 - (b) Find $m_{\alpha}(x)$ explicitly.
- (7) Let β and $GF(2^4)$ be as in the table. Let $C \subseteq K^{15}$ be the 2-error correcting BCH code with parity check matrix

$$H = \begin{bmatrix} 1 & 1 \\ \beta & \beta^3 \\ \beta^2 & \beta^6 \\ \vdots & \vdots \\ \beta^{14} & \beta^{42} \end{bmatrix}.$$

If w is a received word, determine if $d(v, w) \leq 2$ for some v in C in two cases:

- (a) w has syndrome $wH = [s_1, s_3] = [\beta^8, \beta^8];$ (b) w has syndrome $wH = [s_1, s_3] = [\beta^{11}, \beta^3].$
- (8) Let n = 113.
 - (a) Perform the Miller-Rabin probabilistic primality test for n with a=2.
 - (b) Which conclusions can be drawn from the result in (a) concerning if n is prime or not?

Distribution of points															
(1)(a)	4	(2)(a)	6	(3)(a)	7	(4)(a)	7	(5)(a)	5	(6)(a)	4	(7)(a)	8	(8)(a)	5
(1)(b)	6	(2)(b)	5	(3)(b)	4	(4)(b)	4	(5)(b)	4	(6)(b)	6	(7)(b)	8	(8)(b)	2
				(3)(c)	5										
	10		11		16		11		9		10		16		7

Maximum total = 90

Exam score = Total score + 10