Note

- (1) This exam consists of 8 problems.
- (2) Calculators, notes, books, etc., may not be used.
- (3) Justify your answers!
- (4) Throughout this exam, $K = \{0, 1\}$.

Problems

- (1) For each of the following codes, either explain why it does not exist or construct an example.
 - (a) A linear (6,3,3)-code in K^6 .
 - (b) A linear (8,5,4)-code in K^8 .
- (2) Let

and
$$H = \begin{bmatrix} I \\ X \end{bmatrix}$$
.

- (a) Verify that H satisfies the conditions to be a parity check matrix for a binary linear code C.
- (b) Determine d(C).
- (c) Compute how many received words for C can be decoded under IMLD where we correct any error of weight at most 2. Do not simplify your answer to a number.
- (3) Let $F = GF(2^3)$ be constructed using the primitive irreducible polynomial $1 + x^2 + x^3$ and let β be the class of x.
 - (a) Find a parity check matrix (with entries in K) for the cyclic Hamming code of length 7 with generator polynomial $m_{\beta}(x)$.
 - (b) Decode the received word w = 1010101 for this code.
- (4) (a) Factor $f(x) = x^7 + x^5 + x^3 + x^2 + x + 1$ in K[x]. (You may use without proof which polynomials in K[x] are irreducible for degrees 1, 2 and 3.)
 - (b) How many divisors of degree 4 does f(x) have?
- (5) (a) What is the idempotent I(x) modulo $1+x^{27}$ that contains x^3 and has the smalllest possible number of terms?
 - (b) Find the generator polynomial g(x) of the corresponding cyclic linear code C in K^{27} and compute the rate of this code.

In problems (6) and (7), $GF(2^4)$ is constructed as K[x] modulo $1 + x + x^4$ and β is the class of x, so $1 + \beta + \beta^4 = 0$. Moreover, β is primitive, and the table for its powers is:

0000	-	1101	β^7
1000	β^0	1010	β^8
0100	β	0101	β^9
0010	β^2	1110	β^{10}
0001	β^3	0111	β^{11}
1100	β^4	1111	β^{12}
0110	β^5	1011	β^{13}
0011	β^6	1001	β^{14}

- (6) Let β and $GF(2^4)$ be as in the table, let $\alpha = \beta^8 + \beta^9$, and let $m_{\alpha}(x)$ be the minimal polynomial of α in K[x].
 - (i) Determine the degree of $m_{\alpha}(x)$ in an efficient way.
 - (ii) Find $m_{\alpha}(x)$ explicitly.
- (7) Let β and $GF(2^4)$ be as in the table. Let $C \subseteq K^{15}$ be the 2-error correcting BCH code with parity check matrix

$$H = \begin{bmatrix} 1 & 1\\ \beta & \beta^3\\ \beta^2 & \beta^6\\ \vdots & \vdots\\ \beta^{14} & \beta^{42} \end{bmatrix}.$$

If w is a received word, determine if $d(v,w) \leq 2$ for some v in C in two cases: (i) w has syndrome $wH = [s_1, s_3] = [\beta, \beta^{13}];$ (ii) w has syndrome $wH = [s_1, s_3] = [0, \beta^6].$

- (a) Determine if a is a generator of \mathbb{Z}_{17}^{\times} when (i) a=2 and (ii) a=3. (b) Compute $7^{169}+3^{89}\pmod{17}$. (8)

Distribution of points															
(1)(a)	5	(2)(a)	4	(3)(a)	7	(4)(a)	7	(5)(a)	4	(6)(a)	4	(7)(a)	8	(8)(a)	5
(1)(b)	5	(2)(b)	6	(3)(b)	4	(4)(b)	4	(5)(b)	6	(6)(b)	6	(7)(b)	8	(8)(b)	2
		(2)(c)	5												
	10		15		11		11		10		10		16		7