]	Faculty of Sciences
1	VU University Amsterdam

Coding and Cryptography Exam 18:30-21:15 13-01-2014

Note

- (1) This exam consists of 7 problems.
- (2) Calculators, notes, books, etc., may not be used.
- (3) Justify your answers!
- (4) Throughout this exam, $K = \{0, 1\}$.

Problems

- (1) Let C be a binary code of length n = 5 and distance d = 4.
 - (a) Show that the Hamming bound gives $|C| \leq 5$.
 - (b) Show that we in fact have $|C| \leq 2$.

(2) Let
$$X = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$
, and $H = \begin{bmatrix} I \\ X \end{bmatrix}$.

- (a) Verify that H satisfies the conditions to be a parity check matrix for a binary linear code C.
- (b) Determine d(C).
- (c) Use syndromes to determine if the received word w = 11101100 under IMLD can be decoded, where we correct any error of weight at most 1.
- (3) (a) Determine how many idempotents I(x) modulo $1 + x^{21}$ have degree 16.
 - (b) For the idempotent I(x) from (a) with the least number of terms, determine the generator polynomial g(x) of the corresponding cyclic linear code C in K^{21} and compute the rate of this code.
 - (c) Determine the number of divisors in K[x] of $1 + x^{21}$ and of $1 + x^{84}$.
- (4) (a) Factor $f(x) = x^7 + x^2 + 1$ in K[x]. (You may use without proof which polynomials in K[x] are irreducible for degrees 1, 2 and 3.)
 - (b) How many polynomials of degree 10 have 8 divisors including f(x)?

In problems (5) and (6), $GF(2^4)$ is constructed as K[x] modulo $1+x^3+x^4$ and β is the class of x, so $1 + \beta^3 + \beta^4 = 0$. Moreover, β is primitive, and the table for its powers is:

0000	-	1110	β^7
1000	1	0111	β^8
0100	β	1010	β^9
0010	β^2	0101	β^{10}
0001	β^3	1011	β^{11}
1001	β^4	1100	β^{12}
1101	β^5	0110	β^{13}
1111	β^6	0011	β^{14}

- (5) Let β and $GF(2^4)$ be as in the table, let $\alpha = \beta^4 + \beta^{14}$, and let $m_{\alpha}(x)$ be the minimal polynomial of α in K[x].
 - (a) Determine the degree of $m_{\alpha}(x)$ in an efficient way.
 - (b) Is α a primitive element of $GF(2^4)$?
- (6) Let β and $GF(2^4)$ be as in the table. Let $C \subseteq K^{15}$ be the 2-error correcting BCH code with parity check matrix

$$H = \begin{bmatrix} 1 & 1\\ \beta & \beta^3\\ \beta^2 & \beta^6\\ \vdots & \vdots\\ \beta^{14} & \beta^{42} \end{bmatrix}.$$

If w is a received word, determine if $d(v, w) \leq 2$ for some v in C in two cases:

- (a) w has syndrome $wH = [s_1, s_3] = [\beta^{14}, \beta^{12}];$ (b) w has syndrome $wH = [s_1, s_3] = [\beta^6, \beta^8].$
- (7) (a) Determine if a is a generator of \mathbb{Z}_{23}^{\times} when (i) a=2 and (ii) a=5. (b) Compute $3^{241}+5^{83}\pmod{23}$ in an efficient way.

Distribution of points													
(1)(a)	3	(2)(a)	4	(3)(a)	6	(4)(a)	10	(5)(a)	4	(6)(a)	8	(7)(a)	4
(1)(b)	5	(2)(b)	6	(3)(b)	5	(4)(b)	6	(5)(b)	7	(6)(b)	8	(7)(b)	3
		(2)(c)	6	(3)(c)	5								
	8		16		16		16		11		16		7

Maximum exam score = 90

Score for the course = (10+Exam score)/2 + (Total homework score)/2