| VU Amsterdam        | Calculus 2 for BA (X_400636) |
|---------------------|------------------------------|
| Faculty of Sciences | Exam 1                       |
| Dr. Senja Barthel   | 22-11-2023, 18:45-21:00      |
|                     | (+30 minutes extra time)     |

The use of a calculator, the book, or lecture notes is <u>not</u> permitted. Do not just give answers, but write calculations and explain your steps.

You can score 36 points.

## Question 1. (2 points)

Define what it means for a sequence  $\{a_n\}$  to converge towards a limit L.

## Question 2. (4 points)

Consider the sequence

$$a_1 = 1$$
,  $a_2 = -2$ ,  $a_3 = 1$ ,  $a_n = -a_{n-3} - a_{n-2} - a_{n-1}$  for all  $n > 3$ .

Determine whether this sequence is

- a) increasing, decreasing, alternating, or none of the previous,
- b) bounded (above and/or below),
- c) convergent or divergent.

#### Question 3. (5 points)

Find the series representation on an interval including x=0 for the function

$$f(x) = \frac{1+x^3}{1+x^2}.$$

For what values of x is the representation valid?

### Question 4. (6 points)

(+1 point for each correct answer, -1 point for each wrong answer. If the sum of all points is negative, the question is graded with zero points.)

Tick all true statements. Read carefully.

| 011 0      | rae statements. Iteaa carerany.                                                 |
|------------|---------------------------------------------------------------------------------|
| $\bigcirc$ | Every conditionally convergent series is alternating.                           |
| $\bigcirc$ | Every alternating series is conditionally convergent.                           |
| $\bigcirc$ | There exists an alternating series that is absolutely convergent.               |
| $\bigcirc$ | Reordering a conditionally convergent series can make it absolutely convergent. |
| $\bigcirc$ | Every convergent negative series is absolutely convergent.                      |
| $\bigcirc$ | Every convergent positive series is absolutely convergent.                      |

### Question 5. (3+2 points)

Consider the function f(x,y) = x + 2y.

- a) Make a contour plot for the function by drawing the seven isolevels for the values -3, -2, -1, 0, 1, 2, 3.
- b) Give a formula describing the geometric object that is defined by intersecting the graph of f(x, y) with the xz-plane. What kind of object is this?

## Question 6. (1+1+2 points)

- a) Give the definition of the first partial derivative  $f_1(x,y)$  of a differentiable function  $f(x,y): \mathbb{R}^2 \to \mathbb{R}$ .
- b) Describe the geometric meaning of the first derivative  $f_1(a, b)$  taken in the point (a, b).
- c) Compute the partial derivatives of the function  $f(x,y) = 3x^2\sqrt{y}$ .

## Question 7. (5 points)

Let  $\mathbf{u}$ ,  $\mathbf{v}$ , and  $\mathbf{w}$  be three vectors in  $\mathbb{R}^3$  and t be a real value. Verify the identity

$$\boldsymbol{u} \bullet (\boldsymbol{v} \times t\boldsymbol{w}) = t\boldsymbol{v} \bullet (\boldsymbol{w} \times \boldsymbol{u}).$$

# Question 8. (5 points)

Find the equation of the plane that

- a) contains the line of intersection of the two planes 2x+3y-z=0 and x-4y+2z=-5,
- b) and passes through the point with coordinates (-2, 0, -1).

End of exam.