VU Amsterdam	Calculus 2 for BA (X ₋ 400636)
Faculty of Sciences	Practice questions for Exam 2
Dr. Senja Barthel	Autumnn 2022

The use of a calculator, the book, or lecture notes is <u>not</u> permitted. Do not just give answers, but write calculations and explain your steps.

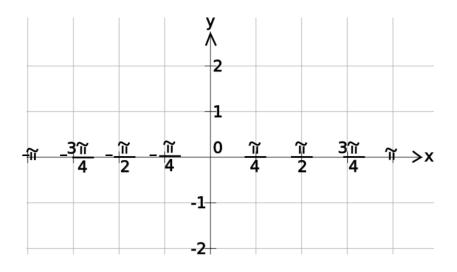
Question 1: (3 points)

The theorem of Schwarz states that if

- (a) two mixed n-th order partial derivatives of a function f involve the same differentiations but in different order
- (b) and if all those partials are continuous at a point P
- (c) and all partials of f of order less than n are continuous in a neighbourhood of P

Then the two partials are equal at the point P.

Explain how the proof of Schwarz' theorem uses (c).


Question 2: (5 points)

Let $f(x,y) = x + \sin x$ be a function from R^2 to R.

- (a) Compute the gradient $\mathbf{grad}_f(a, b)$ of f in the point (a, b).
- (b) Compute the directional derivative of f(x, y) in the point with coordinates $\left(-\frac{\pi}{3}, 0.2\right)$, in direction of the vector $\begin{bmatrix} 3\\4 \end{bmatrix}$.

Question 3: (4 points)

The gradient of a function is given as the vector field $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} y \\ \cos(x) \end{bmatrix}$. Draw the vector field by attaching a vector to each of the grid points below:

Question 4: (8 points)

Determine all points where the function $f: \mathbb{R}^2 \to \mathbb{R}$,

 $f(x,y) = (x-1)^3 + 3(x-1)^2 - xy^2 - 2$ has a maximum or minimum.

Question 5: (5 points)

State for each of the following five statements whether they are true or false (here you do not need to explain your answer).

+1 point for each correct answer, -1 point for each wrong answer.

If the sum of points is negative, the question is graded with 0 points.

- a) If all partial derivatives of a function exist in a point p, then all directional derivatives exist in p as well.
- b) If all directional derivatives of a function exist in a point p, then all partial derivatives exist in p as well.
- c) If a function is differentiable in a point p, then all partial derivatives exist in p.
- d) If a function is differentiable in a point p, then all directional derivatives exist in p.
- e) If all directional derivatives of a function exist in a point p, then the function is differentiable in p.

Question 6: (10 points)

Compute the volume of the object whose base is the region in the xy-plane that is bounded by the three curves $y = e^x$, y = e, x = 0, and the cross sections of the object parallel to the xz-plane are squares.

(Hint: It might help to sketch the object.)

Question 7: (6 points)

- a) Argue that $(\cos(\theta) + i\sin(\theta))^n = \cos(n\theta) + i\sin(n\theta)$ for $n \in \mathbb{N}, -\pi < \theta \le \pi$.
- b) Let z = 2 + 2i, compute z^3 .

Question 8: (8 points)

Show that y = x is a solution of $x^2y'' + 21xy' - 2y = 0$ on the interval $(0, \infty)$, and find the general solution on this interval.

End of exam.