VU Amsterdam	Calculus 2 for BA (X ₋ 400636)
Faculty of Sciences	Exam 2
Dr. Senja Barthel	19-12-2022, 12:15-14:30
	(+30 minutes extra time)

The use of a calculator, the book, or lecture notes is <u>not</u> permitted. Do not just give answers, but write calculations and explain your steps.

You can score 51 points.

Question 1. (1+3+2 points)

- a) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a function for which all second-order derivatives exist. Give the general form of the Hessian matrix of the function f.
- b) Compute the Hessian matrix of the function $f(x,y) = yx\cos(2x) + 15\sin(y)$.
- c) State a theorem that explains why two entries of the Hessian matrix in b) are equal.

Question 2. (2+2+2+2+4 points)For the function $F(x, y) = -\sin(x) - 0.5y$

- a) compute the gradient of F(x, y).
- b) describe the geometric meaning of the gradient $\operatorname{grad} f(a,b)$ of f in the point (a,b).
- c) compute the partial derivatives in the point $(x, y) = (0, -\pi)$.
- d) give the directional derivative $D_{\mathbf{v}}F(x,y)=\frac{\partial F}{\partial v}(x,y)$ for $\mathbf{v}=\begin{pmatrix} a\\b \end{pmatrix}$ with $\sqrt{a^2+b^2}=13$.
- e) draw the gradient vector field in all grid points of Figure 1.

Figure 1: The figure for Question 5e. You can draw the gradient vector field in here or work on your own paper.

Exam continues on next page.

Question 3. (9 points)

For the function f(x,y) = x + 2y defined on the disk $x^2 + y^2 \le 1$

- a) test the function for critical points on the interior of the disk $\{(x,y)|x^2+y^2<1\}$.
- b) determine whether the function has maxima and minima on the boundary of the disc $\{(x,y)|x^2+y^2=1\}$.

Hint: If ϕ is an angle such that $\tan(\phi) = 2$, then $\cos(\phi) = \frac{1}{\sqrt{5}}$ or $\cos(\phi) = -\frac{1}{\sqrt{5}}$ and $\sin(\phi) = \frac{2}{\sqrt{5}}$ or $\sin(\phi) = -\frac{2}{\sqrt{5}}$.

Question 4. (6 points)

Integrate the function $f(x,y) = xy^2$ over the area that is enclosed by the parabola $y = x^2$ and the line y = 2x. (You do not need to simplify the final result.)

Question 5. (4 points)

State for each of the following four statements whether they are true or false (here you do not need to explain your answer).

+1 point for each correct answer, -1 point for each wrong answer.

If the sum of points is negative, the question is graded with 0 points.

For $f, g: D \to \mathbb{R}$ be continuous functions, $D \subset \mathbb{R}^2$:

a)
$$\left| \int \int_D f(x,y) dA \right| \le \int \int_D |f(x,y)| dA$$

b) For
$$D_1 \subset D_2 \subset D$$
: $\int \int_{D_1} f(x,y) dA \leq \int \int_{D_2} f(x,y) dA$

c)
$$\iint_D f(x,y)dA - \iint_D g(x,y)dA = \iint_D (f-g)(x,y)dA$$

d)
$$\int \int_{D_1} |f(x,y)| dA + \int \int_{D_2} |f(x,y)| dA \ge \int \int_{D_1 \cup D_2} |f(x,y)| dA$$

Question 6. (4 points)

Write the complex number $\frac{i^5+5}{(1+i)^5}$ in the form x+iy with $x,y\in\mathbb{R}$.

Question 7. (2+3 points)

- a) Describe the y-axis of the Cartesian coordinate system of \mathbb{R}^2 in polar coordinates. That is, give the polar coordinates of the points with Cartesian coordinates (0, y).
- b) The following coordinates are given in Cartesian coordinates: $p_1 = (0, 5), p_2 = (7, 0), p_3 = (2, 2)$. Transform them into polar coordinates.

Question 8. (5 points)

Determine the solution of the differential equation $\begin{cases} \frac{dy}{dx} = x^2y^2 + y^2 \\ y(3) = 1 \end{cases}$.