VU Amsterdam	Calculus 2 for BA (X ₋ 400636)
Faculty of Sciences	Second Test
dr. Gabriele Benedetti	23-12-2021, 12:15-14:30

The use of a calculator, the book, or lecture notes is <u>not</u> permitted.

Do not just give answers, but write calculations and explain your steps.

You can score 36 points. Grade=(Points/4)+1

Question 1. (4 points, 2 points)

Consider the function

$$f(x,y) = \frac{x}{y} + \ln(1 + xy^2)$$

- a) Find the rate of change of f at the point (2,1) in the direction of the vector $\begin{pmatrix} 1\\1 \end{pmatrix}$. Find the maximum rate of increase of f at the point (2,1).
- b) Compute $\frac{\partial^2 f}{\partial x \partial y}$ at the point (2,1).

Solution.

a) We compute the two partial derivatives of f at an arbitrary point

$$\frac{\partial f}{\partial x}(x,y) = \frac{1}{y} + \frac{y^2}{1+xy^2}, \quad \textbf{(0.5P)} \qquad \frac{\partial f}{\partial y}(x,y) = -\frac{x}{y^2} + \frac{2xy}{1+xy^2}. \quad \textbf{(0.5P)}$$

Evaluating at x = 2 and y = 1, we find

$$\frac{\partial f}{\partial x}(2,1) = \frac{4}{3}, \quad \textbf{(0.5P)} \qquad \frac{\partial f}{\partial y}(2,1) = -\frac{2}{3}. \quad \textbf{(0.5P)}$$

The rate of change f at (2,1) in the direction of $\mathbf{v} := \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is

$$D_{\mathbf{v}/|\mathbf{v}|}f(2,1) = \frac{\mathbf{v}}{|\mathbf{v}|} \bullet \nabla f(2,1) = \frac{1}{\sqrt{2}} \left(1 \cdot \frac{\partial f}{\partial x}(2,1) + 1 \cdot \frac{\partial f}{\partial y}(2,1) \right) = \frac{\sqrt{2}}{3}.$$
 (1P)

The maximum rate of increase of f at the point (2,1) is

$$|\nabla f(2,1)| = \sqrt{\left(\frac{\partial f}{\partial x}(2,1)\right)^2 + \left(\frac{\partial f}{\partial y}(2,1)\right)^2} = \frac{2\sqrt{5}}{3}.$$
 (1P)

b) We compute

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = -\frac{1}{y^2} + \frac{2y}{(1 + xy^2)^2}$$
 (1P)

and evaluating at (2,1):

$$\frac{\partial^2 f}{\partial x \partial y}(2,1) = -\frac{7}{9}.$$
 (1P)

Question 2. (4 points, 3 points)

The function $f: \mathbb{R}^2 \to \mathbb{R}$ is given by

$$f(x,y) = -xy^2 + y^3 + y^2 + \frac{x^2}{2}.$$

- a) Determine all critical points of f.
- b) Classify the two critical points (0,0) and (4,2).

Solution.

a) The critical points (x, y) of f satisfy the system of equations

$$\begin{cases} \frac{\partial f}{\partial x}(x,y) = 0\\ \frac{\partial f}{\partial y}(x,y) = 0. \end{cases}$$
 (0.5P)

We compute the partial derivatives of f:

$$\frac{\partial f}{\partial x}(x,y) = -y^2 + x$$
, (0.5P) $\frac{\partial f}{\partial y}(x,y) = -2xy + 3y^2 + 2y$. (0.5P)

Therefore the system of equations is

$$\begin{cases} -y^2 + x = 0\\ -2xy + 3y^2 + 2y = 0. \end{cases}$$

From the first one we get $x = y^2$, which substituted into the second one yields

$$y(-2y^2 + 3y + 2) = 0,$$
 (0.5P)

which implies y = 0 (0.5P) or $2y^2 - 3y - 2 = 0$.

The equation $2y^2 - 3y - 2 = 0$ has the solutions y = 2 and y = -1/2 (0.5P). Since $x = y^2$, the critical points are

$$(0,0), (4,2), (\frac{1}{4}, -\frac{1}{2}).$$
 (1P)

b) We compute the second partial derivatives of f

$$A = \frac{\partial^2 f}{\partial x^2} = 1, \qquad B = \frac{\partial^2 f}{\partial x \partial y} = -2y, \qquad C = \frac{\partial^2 f}{\partial y^2} = -2x + 6y + 2.$$
 (1P)

For (x, y) = (0, 0), we get A > 0 and $B^2 - AC = -2 < 0$. Therefore, (0, 0) is a local minimum (1P). For (x, y) = (4, 2), we get A > 0 and $B^2 - AC = 10 > 0$. Therefore, (4, 2) is a saddle point (1P).

Question 3. (4 points)

Use the method of Lagrange multipliers to find the minimum and maximum value of the function f(x,y) = xy - y subject to the constraint $x^2 + y^2 = 1$.

Solution. The minimum and maximum value are attained at points (x, y) such that there is a λ satisfying the system of equations

$$\begin{cases} 0 = \frac{\partial L}{\partial x}(x, y, \lambda) \\ 0 = \frac{\partial L}{\partial y}(x, y, \lambda) \\ 0 = \frac{\partial L}{\partial \lambda}(x, y, \lambda). \end{cases}$$
 (0.5P)

where $L(x, y, \lambda) = L(x, y, \lambda) = xy - y + \lambda(x^2 + y^2 - 1)$ (0.5P). We compute

$$\frac{\partial L}{\partial x}(x,y,\lambda) = y + 2\lambda x, \quad \frac{\partial L}{\partial y}(x,y,\lambda) = x - 1 + 2\lambda y, \quad \frac{\partial L}{\partial \lambda}(x,y,\lambda) = x^2 + y^2 - 1. \quad \textbf{(1P)}$$

Thus we get the system

$$\begin{cases} 0 = y + 2\lambda x \\ 0 = x - 1 + 2\lambda y \\ 0 = x^2 + y^2 - 1. \end{cases}$$

Eliminating λ from the first two equations, we get

$$y^2 = x^2 - x,$$
 (0.5P)

which substituted in the last equation yields

$$2x^2 - x - 1 = 0, (0.5P)$$

which has x=1 and $x=-\frac{1}{2}$ as solutions. The first one yields $y^2=0$ and the second one $y^2=\frac{3}{4}$. Therefore, the solutions are

$$(1,0), \qquad (-\frac{1}{2}, -\frac{\sqrt{3}}{2}), \qquad (-\frac{1}{2}, \frac{\sqrt{3}}{2}). \qquad (\textbf{0.5P})$$

There holds

$$f(1,0) = 0,$$
 $f(-\frac{1}{2}, -\frac{\sqrt{3}}{2}) = \frac{3\sqrt{3}}{4},$ $f(-\frac{1}{2}, \frac{\sqrt{3}}{2}) = -\frac{3\sqrt{3}}{4}.$

Therefore, the minimum value is $-\frac{3\sqrt{3}}{4}$ and the maximum value is $\frac{3\sqrt{3}}{4}$ (0.5P).

Question 4. (3 points)

Compute

$$\int_0^{\sqrt[3]{\pi^2}} \int_{\sqrt{y}}^{\sqrt[3]{\pi}} 3\sin(x^3) \, dx \, dy.$$

Solution. We have

$$I = \int_{0}^{\sqrt[3]{\pi^2}} \int_{\sqrt{u}}^{\sqrt[3]{\pi}} 3\sin(x^3) \, dx \, dy = \iint_{D} 3\sin(x^3) dA,$$

where D is the set of points (x, y) such that $0 \le y \le \sqrt[3]{\pi^2}$ and $\sqrt{y} \le x \le \sqrt[3]{\pi}$. This means that $x \in [0, \sqrt[3]{\pi}]$ and that $0 \le y \le x^2$. Therefore, we have

$$I \stackrel{\text{(1P)}}{=} \int_0^{\sqrt[3]{\pi}} \int_0^{x^2} 3\sin(x^3) \, dy \, dx \stackrel{\text{(1P)}}{=} \int_0^{\sqrt[3]{\pi}} 3\sin(x^3) x^2 \, dx = -\cos(x^3) \Big|_0^{\sqrt[3]{\pi}} \stackrel{\text{(1P)}}{=} 2.$$

Question 5. (4 points)

Let R be the finite region in the first quadrant of the xy-plane bounded by the line y = 0, the line $\sqrt{3}y = x$ and the curve $x^2 + y^2 = 4$. Compute

$$\int \int_{R} 5xy^2 dA.$$

Solution. Let (r, θ) denote polar coordinates. The points in the region R satisfy

$$0 \le r \le 2, \qquad 0 \le \theta \le \arctan\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6}$$
 (1P).

Therefore, we get

$$I = \iint_{R} 5xy^{2} dA = \int_{0}^{\frac{\pi}{6}} \int_{0}^{2} 5(r\cos\theta)(r\sin\theta)^{2} r dr d\theta = \int_{0}^{\frac{\pi}{6}} \int_{0}^{2} 5r^{4}\cos\theta\sin^{2}\theta dr d\theta.$$
 (1P)

We integrate with respect to r

$$I = \int_0^{\frac{\pi}{6}} r^5 \cos \theta \sin^2 \theta \Big|_{r=0}^{r=2} d\theta = 32 \int_0^{\frac{\pi}{6}} \cos \theta \sin^2 \theta d\theta \qquad (1P)$$

and with respect to θ

$$I = 32 \cdot \frac{1}{3} \sin^3 \theta \Big|_0^{\frac{\pi}{6}} = \frac{4}{3}.$$
 (1P)

Question 6. (3 points)

Transform the polar equation

$$r = \frac{1}{\sqrt{1 + 2\cos(2\theta)}}$$

to rectangular coordinates, and describe the curve represented.

Solution. We square both sides of the polar equation (since they are positive) and get rid of denominators obtaining

$$1^2 \stackrel{\text{(0.5P)}}{=} r^2 (1 + 2\cos(2\theta)) \stackrel{\text{(0.5P)}}{=} r^2 + 2r^2(\cos^2\theta - \sin^2\theta),$$

where we used the duplication formula for the cosine. Rectangular coordinates (x, y) and polar coordinates are related by $x = r \cos \theta$ and $y = r \sin \theta$. In particular, $x^2 + y^2 = r^2$. Therefore,

$$r^2 + 2r^2(\cos^2\theta - \sin^2\theta) = (x^2 + y^2) + 2x^2 - 2y^2 = 3x^2 - y^2$$
 (0.5P)

and the equation in rectangular coordinates is

$$3x^2 - y^2 = 1.$$
 (0.5P)

Thus, the curve represented is a hyperbola (1P) (with asymptotes $\sqrt{3}x = \pm y$).

Question 7. (2 points, 1 point)

- a) Write the polar representation of all complex numbers z satisfying $z^3 = 2 + 2i$.
- b) Compute the real and imaginary part of all complex numbers z satisfying $z^3 = 2 + 2i$ and belonging to the second quadrant of the complex plane.

Solution.

a) We have

$$|2+2i| = \sqrt{2^3}, \quad \arg(2+2i) = \frac{\pi}{4} + 2\pi k, \ k \in \mathbb{Z}.$$
 (1P)

Therefore, the solutions to $z^3 = 2 + 2i$ have

$$|z| = (\sqrt{2^3})^{\frac{1}{3}} = \sqrt{2}, \quad \arg(z) = \frac{\pi}{12} + \frac{2\pi}{3}k, \ k \in \mathbb{Z}.$$
 (0.5P)

For k=0, we get $\arg(z)=\frac{\pi}{12}\in[0,2\pi)$. For k=1, we get $\arg(z)=\frac{3\pi}{4}\in[0,2\pi)$. For k=2, we get $\arg(z)=\frac{17\pi}{12}\in[0,2\pi)$. Therefore, we obtain three solutions

$$(0.5P) \begin{cases} z_0 = \sqrt{2} \left(\cos \left(\frac{\pi}{12} \right) + i \sin \left(\frac{\pi}{12} \right) \right), \\ z_1 = \sqrt{2} \left(\cos \left(\frac{3\pi}{4} \right) + i \sin \left(\frac{3\pi}{4} \right) \right), \\ z_2 = \sqrt{2} \left(\cos \left(\frac{17\pi}{12} \right) + i \sin \left(\frac{17\pi}{12} \right) \right) \end{cases}$$

b) If $\arg(z) \in [0, 2\pi)$, then z belongs to the second quadrant exactly if $\frac{\pi}{2} \leq \arg(z) \leq \pi$ (0.5P). Therefore, only z_1 belongs to the second quadrant and we can write

$$z_1 = \sqrt{2} \left(-\frac{1}{\sqrt{2}} + i \frac{1}{\sqrt{2}} \right) = -1 + i.$$
 (0.5P)

Question 8. (3 points)

Find the function y(x) solving the initial-value problem

$$\begin{cases} \frac{dy}{dx} = 2xe^{x^2 - y}, \\ y(0) = \ln 2. \end{cases}$$

Solution. Step 1: We separate the variables in the equation and get

$$e^y \frac{dy}{dx} = 2xe^{x^2}.$$
 (0.5P)

Step 2: Using the chain rule, we see that this equation is equivalent to

$$\frac{d}{dx}(e^y) = \frac{d}{dx}(e^{x^2}).$$
 (1P)

Step 3: Integrating we get $e^y = e^{x^2} + C$ for some $C \in \mathbb{R}$ and therefore

$$y(x) = \ln(e^{x^2} + C), \quad C \in \mathbb{R}.$$
 (1P)

Step 4: Substituting x = 0, we find $\ln 2 = \ln(1 + C)$. Hence C = 1 and the solution is

$$y(x) = \ln(e^{x^2} + 1)$$
. (0.5P)

5

For Step 2 and 3 there is also the following alternative solution:

$$\int e^y \frac{dy}{dx} dx = \int 2x e^{x^2} dx \qquad \iff \qquad (0.5P)$$

$$\int e^y \, dy = \int e^u \, du, \qquad u = x^2 \qquad \iff \qquad (0.5P)$$

$$e^y = e^{x^2} + C \qquad \iff \qquad (0.5P)$$

$$y = \ln(e^{x^2} + C) \tag{0.5P}$$

Question 9. (3 points)

Find the function y(x) solving the initial-value problem

$$\begin{cases} y'' - 2y' + 5y = 0, \\ y(0) = 2, \\ y'(0) = 0. \end{cases}$$

Solution. We solve the associated quadratic equation $k^2 - 2k - 5 = 0$ (0.5P). Its solutions are $k = 1 \pm 2i$ (0.5P). Therefore, the general solution of y'' - 2y' + 5y = 0 is

$$y(x) = Ae^x \cos(2x) + Be^x \sin(2x), \ A, B \in \mathbb{R}.$$
 (1P)

We have y(0) = A and y'(0) = A + 2B. Therefore, the initial conditions imply A = 2 (0.5P) and B = -1 (0.5P). The desired solution is

$$y(x) = 2e^x \cos(2x) - e^x \sin(2x).$$