Vrije Universiteit Amsterdam	Calculus 2, Resit
Faculty of Science	06-02-2020
Department of Mathematics	18:30 - 20:30

The use of a calculator, a book, or lecture notes is <u>not</u> permitted. Do not just give answers, but give calculations and explain your steps.

1. Explain whether the following series is conditionally convergent, absolutely convergent or divergent.

a)
$$\sum_{n=2}^{\infty} \frac{(-1)^n \sqrt{n}}{\ln n},$$

b)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n^3}$$
.

2. Consider the power series

$$\sum_{n=0}^{\infty} \frac{2^n (x-3)^n}{\sqrt{n+3}}.$$

Determine its interval of convergence.

3. Find the Taylor series around x = 1 and the radius of convergence for

$$f(x) = 10^x$$
.

4. The vectors \mathbf{u} and \mathbf{v} and point P are given by

$$\mathbf{u} = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} = \mathbf{i} + \mathbf{j} - 2\mathbf{k}, \quad \mathbf{v} = \begin{pmatrix} 0 \\ 1 \\ -5 \end{pmatrix} = \mathbf{j} - 5\mathbf{k} \quad \text{and} \quad P = (3, -2, 1).$$

- a) Calculate the dot-product $\mathbf{u} \bullet \mathbf{v}$ and the cross-product $\mathbf{u} \times \mathbf{v}$.
- b) Calculate $\mathbf{u}_{\mathbf{v}}$, the vector projection of \mathbf{u} along \mathbf{v} .
- c) Give an equation for the plane passing through P and normal to the vector \mathbf{u} .
- 5. Find

$$\frac{\partial^2}{\partial y^2} f(xy^2, xy)$$

in terms of the partial derivatives of the function f, assuming f has continuous partial derivatives of all orders.

(Please turn over)

6. The function $f: \mathbb{R}^2 \to \mathbb{R}$ is given by

$$f(x,y) = -x^2 - xy^2 + y^2 + 6x - 2.$$

- a) Determine all critical points of f.
- b) Indicate for each of the critical points found in part a) if f has a local minimum value or a local maximum value, or that it is a saddle point. (If you did not reach a solution to a), you may imagine the critical points to be (4,1) and (2,2).)
- c) Find the equation of the tangent plane to the graph z = f(x, y) at the point (-1, 1).
- 7. a) Compute

$$\int_0^1 \left(\int_{y\sqrt{\pi}}^{\sqrt{\pi}} \sin(x^2) \, dx \right) \, dy.$$

b) The domain $S \subset \mathbb{R}^2$ is given by

$$S = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 2 \text{ and } x \ge 0\}.$$

Calculate

$$\int \int_{S} \frac{x}{\sqrt{x^2 + y^2}} \, dA.$$

- 8. Find all complex solutions z of the equation $z^4 = -16i$. Express your solution(s) in the form $r(\cos(\theta) + i\sin(\theta))$.
- 9. Find the solution y(x) to the initial value problem

$$\begin{cases} \frac{dy(x)}{dx} - xy(x) = e^{x^2/2}\sin(x), \\ y(0) = 2. \end{cases}$$

Scoring:

Final grade =
$$\frac{\text{\# points}}{3} + 1$$