
Resit Calculus 2, 6 February 2020, Solutions
Guideline for corrections:

• minor mistake (for example a computational error): substract 1
2 point;

• major mistake (for example a conceptual error): substract 1 point;

• answer written somewhere but not clearly articulated: subtract 1
2 point;

• correct answer but derivation/motivation not clear: subtract 1 point.

1. a) The sequence (−1)n
√
n

lnn does not converge to zero, so the series is divergent. [ 1 point
]

b) Write an = (−1)n−1

n3 . Since
∑∞

n=1 |an| is a convergent p-series,
∑∞

n=1 an is absolutely
convergent. [ 1 point ]

2. We write the power series as
∑∞

n=0 an(x− 3)n where an = 2n√
n+3

. Then

L := lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ 2n+1

√
n+ 4

√
n+ 3

2n

∣∣∣∣ = 2.

It follows that the radius of convergence is R = 1/L = 1
2 . [ 1 point ] We now investigate

the boundary points, x = 3 − 1/2 = 5/2 and x = 3 + 1/2 = 7/2. For x = 5/2, the series

is
∑∞

n=0
(−1)n√
n+3

which is conditionally convergent by the Alternating Series Theorem. [ 1

point ] For x = 7/2, the series is
∑∞

n=0
1√
n+3

which is a divergent p-series (with p = 1/2).

[ 1 point ] We find that the interval convergence is [5/2, 7/2). [ -1/2 point if the final
conclusion is not stated ]

3. Using the standard series exp(y) =
∑∞

n=0
yn

n! , we find

10x = 10× 10x−1 = 10 exp(ln(10)(x− 1)) = 10
∞∑
n=0

(ln 10)n(x− 1)n

n!
. [ 1 point ]

(An alternative way is to differentiate f(x) = 10x = exp(ln(10)x), resulting in

f ′(x) = ln(10) exp(ln(10)x) = ln(10)f(x),

and by repeating, f (n)(x) = (ln(10))nf(x). It follows that

f (n)(1) = 10(ln(10))n.

Using the general formula for the Taylor series

∞∑
n=0

f (n)(1)

n!
(x− 1)n

gives the same result as above.)

The radius of convergence for the Taylor series of the exponential series exp(y) is known
to be ∞. Setting y = ln(10)(x− 1) gives the radius of convergence R =∞ in terms of x.
[ 1 point ]

(Alternatively, compute

L = lim
n→∞

∣∣∣∣(ln 10)n+1

(n+ 1)!

n!

(ln 10)n

∣∣∣∣ = 0,

resulting in R = 1/L =∞.)
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4.

u =

 1
1
−2

 = i + j− 2k, v =

 0
1
−5

 = j− 5k and P = (3,−2, 1).

a) u • v = 1× 0 + 1× 1 + (−2)× (−5) = 11 [ 1 point ] and

u× v =

 1× (−5)− (−2)× 1
(0)× (−2)− (1)× (−5)

(1)× (1)− (1)× (0)

 =

−3
5
1

 . [ 1 point ]

b)

uv =
(u • v

v • v

)
v =

11

02 + 12 + (−5)2

 0
1
−5

 =
11

26

 0
1
−5

 =
11

26
j− 55

26
k.

c) This equation is given by

(x− 3) + (y + 2)− 2(z − 1) = 0, [ 1 point ] ,

which can also be written as

z = 1 + 1
2(x− 3) + 1

2(y + 2).

5. We compute

∂

∂y
f(xy2, xy) = 2xyf1(xy

2, xy) + xf2(xy
2, xy), [ 1 point ],

and therefore

∂2

∂y2
f(xy2, xy) =

∂

∂y

(
2xyf1(xy

2, xy) + xf2(xy
2, xy)

)
= 2xf1(xy

2, xy) + (2xy)2f11(xy
2, xy) + 2x2yf12(xy

2, xy)

+ 2x2yf21(xy
2, xy) + x2f22(xy

2, xy), [ 1 point ]

which (since the partial derivatives f12 and f21 are equal under the stated conditions) can
also be written e.g. as

∂2

∂y2
f(xy2, xy) = 2xf1(xy

2, xy) + (2xy)2f11(xy
2, xy) + 4x2yf12(xy

2, xy) + x2f22(xy
2, xy).

6.
f(x, y) = −x2 − xy2 + y2 + 6x− 2.

a) We compute the gradient of f ,

∇f(x, y) =

(
−2x− y2 + 6
−2xy + 2y

)
. [ 1 point ]

Setting the gradient to zero gives after some algebra the critical points

(3, 0), (1,−2), (1, 2). [ 1 point ].
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b) The Hessian matrix is given by

∇2f(x, y) =

(
−2 −2y
−2y −2x+ 2

)
.

At (x, y) = (3, 0) we have fxxfyy − (fxy)
2 = (−2)(−4) − (0)(0) = 8. Furthermore

fxx = −2, so that (3, 0) is a local maximum. [ 1 point ]

At (x, y) = (1,±2) we have fxxfyy − (fxy)
2 = (−2)(0) − (4)2 < 0. This means that

(1,−2) and (1, 2) are saddle points. [ 1 point ]

Similar derivativations give for the ‘fake’ critical points that (4, 1) is a local maximum
and (2, 2) is a saddle point. [ -1 point if the student works with these when not
necessary. ]

c) The equation for the tangent plane at (−1, 1) is given by

z = f(−1,+1) + ∂xf(−1, 1)(x− (−1)) + ∂yf(−1, 1)(y − 1),

which gives
z = −7 + 7(x+ 1) + 4(y − 1). [ 1 point ]

7. a) By changing the order of integration,∫ 1

0

(∫ √π
y
√
π

sin(x2) dx

)
dy =

∫ √π
0

(∫ x/
√
π

0
sin(x2) dy

)
dx [ 1 point ]

=

∫ √π
0

(x/
√
π) sin(x2) dx

= − 1

2
√
π

cos(x2)

∣∣∣∣x=
√
π

x=0

=
1√
π
. [ 1 point ]

b) By using polar coordinates∫ ∫
S

x√
x2 + y2

dA =

∫ π/2

−π/2

∫ √2
0

r cos θ

r
r dr dθ [ 1 point ]

= (12r
2)
∣∣r=√2
r=0

(sin θ)|θ=π/2θ=−π/2 = 2. [ 1 point ]

8. We have arg(−16i) = −π/2+k2π for k ∈ Z, and |−16i| = 16. [ 2 × 1/2 point ] Therefore
if z4 = −16i, then |z| = 4

√
16 = 2 and arg z = −π/8 + kπ/2, giving

z = 2(cos(−π/8) + i sin(−π/8)), z = 2(cos(3π/8) + i sin(3π/8)),

z = 2(cos(7π/8) + i sin(7π/8)) z = 2(cos(−5π/8) + i sin(−5π/8). [ 1 point ]

9. First solve the homogeneous equation dyh
dx = xyh. Using separation of variables,

1

yh
dy = x dx, giving ln |yh| = x2/2 + c, i.e. yh(x) = Cex

2/2 [ 1 point ]

for some C ∈ R. We can now solve the inhomogeneous equation, e.g. using variation of
constants, by letting y(x) = C(x)yh(x). Inserting into the differential equation gives

C ′(x)ex
2/2 + C(x)xex

2/2 − ex2/2 sin(x) = C(x)xex
2/2,

which simplifies to

C ′(x) = sin(x), which gives C(x) = − cos(x) + C1
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for some C1 ∈ R. This gives the general solution

y(x) = (C1 − cos(x))ex
2/2. [ 1 point ]

Plugging in the initial condition y(0) = 2 gives C1 = 3, so that the final solution is given
by

y(x) = (3− cos(x))ex
2/2. [ 1 point ]
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