
Second test Calculus 2, 18 December 2019, Solutions
Guideline for corrections:

• minor mistake (for example a computational error): substract 1
2 point;

• major mistake (for example a conceptual error): substract 1 point;

• answer written somewhere but not clearly articulated: subtract 1
2 point;

• correct answer but derivation/motivation not clear: subtract 1 point.

1.

∂

∂x
f(xy3, xy) = y3f1(xy

3, xy) + yf2(xy
3, xy); [1 point]

∂2

∂y∂x
f(xy3, xy) =

∂

∂y

(
y3f1(xy

3, xy) + yf2(xy
3, xy)

)
= 3y2f1(xy

3, xy) + 3xy5f11(xy
3, xy) + xy3f12(xy

3, xy)

+ f2(xy
3, xy) + 3xy3f21(xy

3, xy) + xyf22(xy
3, xy). [2 points]

Since f has continuous partial derivatives of all orders, the mixed partial derivatives f12
and f21 are identical and the expression for ∂2

∂y∂xf(xy3, xy) may be shortened to, for
example (but this is not necessary for full points)

∂2

∂y∂x
f(xy3, xy) = 3y2f1(xy

3, xy) + 3xy5f11(xy
3, xy) + 4xy3f12(xy

3, xy)

+ f2(xy
3, xy) + xyf22(xy

3, xy).

2. f(x, y) = x3 + y3 − 3xy + 1.

(a) ∇f(x, y) =

(
3x2 − 3y
3y2 − 3x

)
, and û = 1√

32+42

(
3
4

)
=

(
3
5
4
5

)
so that

Dûf(1, 2) =

(
−3
9

)
•
(

3
5
4
5

)
= −9

5
+

36

5
=

27

5
.

[12 point] correct gradient/partial derivatives expression in terms of x and y;

[12 point] normalization of u;

[12 point] general formula for directional derivative;

[12 point] correct computation.

(b) Setting ∇f(x, y) = 0 gives the conditions 3x2 = 3y and 3y2 = 3x [1 point]. The
first equation gives y = x2, and inserting into the second equation gives x4 = x, so
that x = 0 or x3 = 1. This gives the critical points (0, 0) and (1, 1) [2 points].

(c) The Hessian matrix is

∇2f(x, y) =

(
6x −3
−3 6y

)
[1 point].

Using the notation ∇2f(x, y) =

(
A B
B C

)
, we have

det∇2f(0, 0) = AC −B2 = 0 · 0− (−3) · (−3) = −9 < 0,
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so that it (0, 0) is a saddle point [1 point]. Next

det∇2f(1, 1) = AC −B2 = 6 · 6− (−3) · (−3) = 27 > 0,

and
tr∇2f(1, 1) = A+ C = 6 + 6 = 12 > 0,

so that (1, 1) is a local minimum [1 point].

(Similar computations would give for the hypothetical critical points (12 , 2) and (0, 3)
that (12 , 2) is a local minimum and (0, 3) is a saddle point.)

3. f(x, y) = x2 + y2, constraint xy = 1. Lagrangian function

L(x, y, λ) = x2 + y2 + λ(xy − 1) [12 point].

(It is of course fine if the student works with

L(x, y, λ) = x2 + y2 + λ(1− xy),

the resulting computations should give the same final result.) Computing ∇L(x, y, λ) and
setting to zero gives three necessary conditions:

2x+ λy = 0, 2y + λx = 0, xy = 1. [12 point]

[ The third condition is the original constraint, it is not necessary for the student to write
it again. ] Taking the first equation gives x = −1

2λy. Plugging into the second equation
gives

2y − 1
2λ

2y = 0,

so that either y = 0 or λ2 = 4. The choice y = 0 gives x = −1
2λy = 0, which does not

satisfy the constraint. The choice λ2 = 4 gives λ = ±2, and therefore x = −y or x = y.
Plugging these into the constraint gives −y2 = 1 (which does not have solutions in R) or
y2 = 1, giving y = ±1. We end up with the critical points (1, 1) and (−1,−1). [1 point]

(An alternative correct solution deduces y = 1/x from the constraint, and plugs this into
the function to obtain g(x) = f(x2, 1/x2) = x2 + 1/x2. The critical points of this function
are x = ±1, leading to the same final result. This is an alternative way to earn [2 points])

The critical points (−1,−1) and (1, 1) are necessarily minima: the function f(x, y) con-
strained to xy = 1 does not have a maximum (take y = 1/x, then f(x, 1/x) → ∞ as
x→∞). [1 point]

4. (a) y ∈ [0, 1] and x ∈ [2y, 2] is the same as x ∈ [0, 2] and y ∈ [0, x/2]. Therefore∫ 1

0

∫ 2

2y
ex

2
dx dy =

∫ 2

0

∫ x/2

0
ex

2
dy dx [1 point]

=

∫ 2

0

x

2
ex

2
dx =

1

4
ex

2

∣∣∣∣x=2

x=0

=
1

4

(
e4 − 1

)
. [1 point]

(b) In polar coordinates S = {(r, θ) : 1 ≤ r ≤ 3 and 0 ≤ θ ≤ π/2}. Therefore∫ ∫
S

y√
x2 + y2

dA

=

∫ π/2

0

∫ 3

1

r sin θ

r
rdθ, [1 point]

=

(
1
2r

2

∣∣∣∣r=3

r=1

)
·

(
− cos θ

∣∣∣∣θ=π/2
θ=0

)
=

(
9

2
− 1

2

)
· (−0− (−1)) = 4. [1 point]
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5. z = 1−
√

3i and w = 3 + 3i.

(a)

|z| =
√

12 + (−
√

3)2 = 2 [12 point],

Arg z = arctan

(
−
√

3

1

)
= −π

3
[12 point],

|w| =
√

32 + 32 = 3
√

2 [12 point],

Argw = arctan

(
3

3

)
=
π

4
[12 point].

The principal argument should lie between −π and π. For values of the principal
argument that are correct up to an addition/subtraction of a multiple of 2π, subtract
1/2 point once.

(b) Using the expression for |w| and Arg(w), if v2 = w, then we have

|v| =
√
|w| =

√
3
√

2, [12 point],

arg(v) = 1
2 arg(w) = 1

2(Arg(w) + k2π) =
π

8
+ kπ, k ∈ Z, [12 point].

We thus find [1 point]

v =

√
3
√

2 (cos(π/8) + i sin(π/8)) or v =

√
3
√

2 (cos(9π/8) + i sin(9π/8)) .

[ If the solution is represented as

v =

√
3
√

2 (cos(π/8 + kπ) + i sin(π/8 + kπ)) , k ∈ Z,

subtract 1
2 point, as it should be clear that there are two solutions v only. It is fine if

for example the angle −7π/8 is used instead of 9π/8, since these correspond to the
same v. ]

6. (a) Using separation of variables, for x > 0,

x
dy

dx
= (y + 1)2,∫

1

(y + 1)2
dy =

∫
1

x
dx, [1 point]

− 1

y + 1
= ln(x) + c,

y(x) = − 1

c+ lnx
− 1, [1 point],

for some constant c ∈ R. [ Forgetting the constant c: subtract 1 point. ]

(b) The initial value problem 9y′′(x) − 6y′(x) + 5y(x) = 0 has characteristic (or auxiliary)
equation

9r2 − 6r + 5 = 0,

with roots r = 1
3 + 2

3 i and r = 1
3 −

2
3 . [1 point] We see that the general solution is given

by

y(x) = e
1
3x
(
C1 cos(23x) + C2 sin(23x)

)
, x ∈ R [1 point].
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The initial value y(0) = 0 yields C1 = 0. We then have

y′(x) = 1
3C2e

1
3x sin(23x) + 2

3C2e
1
3x cos(23x),

so that y′(0) = 2
3C2. Putting y′(0) = −2 gives C2 = −3, resulting in the solution

y(x) = −3e
1
3x sin(23x), x ∈ R, [1 point].

[ Not giving the final expression for y(x): subtract 1/2 point.]
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