VU University Amsterdam	Calculus 2, First Test
Faculty of Sciences	18-11-2019
Department of Mathematics	8.45h - 10.45h

The use of a calculator, a book, or lecture notes is <u>not</u> permitted. Do not just give answers, but give calculations and explain your steps.

1. Determine whether the given sequence is (a) bounded (above and/or below), (b) increasing, decreasing or alternating, (c) convergent or divergent:

$$\left\{\frac{n\sin n}{n^2+1}\right\}_{n=1}^{\infty}.$$

2. Determine whether the following series are convergent or divergent. If the series is convergent explain if it is conditionally convergent or absolutely convergent.

(a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt{n+1} + \sqrt{n}}$$
,

(b)
$$\sum_{n=1}^{\infty} (-1)^n \frac{7n + (993)^n}{n!}.$$

3. Determine the interval of convergence of the power series

$$\sum_{n=1}^{\infty} \frac{(2-x)^n}{3^n n^{1/3}}.$$

4. Calculate the Taylor series in powers of x-1 of the function

$$f(x) = \frac{x}{1+x}$$

and determine its radius of convergence.

(Please turn over)

5. The vectors \mathbf{u} and \mathbf{v} , and the point P are given by

$$\mathbf{u} = \begin{pmatrix} 4 \\ 1 \\ -2 \end{pmatrix} = 4\mathbf{i} + \mathbf{j} - 2\mathbf{k} \quad \text{and} \quad \mathbf{v} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = \mathbf{i} + 2\mathbf{j} + \mathbf{k}, \quad P = (2, 1, 4).$$

- (a) Calculate the dot product $\mathbf{u} \bullet \mathbf{v}$ and the cross product $\mathbf{u} \times \mathbf{v}$.
- (b) Calculate $\mathbf{u}_{\mathbf{v}}$, the vector projection of \mathbf{u} along \mathbf{v} .
- (c) Give an equation for the plane passing through P which is normal to \mathbf{u} .
- (d) Let L denote the line through P parallel to \mathbf{v} . What is the distance from the origin to L?
- 6. Consider the function

$$f(x,y) = \frac{\cos(xy)}{1 - y^2}.$$

- (a) Compute the partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.
- (b) Determine an expression for the tangent plane of f at the point $(1/2, \pi)$.

Scoring:

Final grade =
$$\frac{\text{\#points}}{3} + 1$$