
First test Calculus 2, 18 November 2019, Solutions

Rough guideline:

• minor mistake (computation error): substract 1
2 point;

• major mistake: substract 1 point

1. We have
−n

n2 + 1
≤ n sinn

n2 + 1
≤ n

n2 + 1
,

By the squeeze law we find limn→∞
n sinn
n2+1

= 0, i.e. the sequence is convergent [1
point]. It follows that the sequence is bounded [1 point]. The sequence is not
decreasing (there are infinitely many values n for which sinn < 0 and sin(n+1) > 0)
and for the same reason the sequence is not increasing. Also the series is not
alternating since sinn is not alternating (sin(π/2 + nπ) would be alternating, but
e.g. sin(5) < 0 and sin(6) < 0). [1 point]

2. (a) [3 points] We have an = (−1)n 1√
n+1+

√
n

= (−1)nbn with bn = 1√
n+1+

√
n
→ 0

as n → ∞. Also (bn) is decreasing. By the alternating series test,
∑∞

n=1 an
is convergent. The series is not absolutely convergent, since

∑∞
n=1 |an| =∑∞

n=1 bn = ∞. (bn ≥ 1
2
√
n+1

which up to the factor 1/2 gives a divergent

p-series.) Therefore the series is conditionally convergent.

(b) [3 points] We can use the ratio test. For an = (−1)n 7n+(993)n

n! we have∣∣∣∣an+1

an

∣∣∣∣ =
7(n+ 1) + (993)n+1

(n+ 1)!

n!

7n+ (993)n
=

7(n+ 1) + (993)n+1

(n+ 1)(7n+ (993)n)

=
7(n+ 1)(993)−n + 993

(n+ 1)(7n(993)−n + 1)
→ 0

as n → ∞. (The numerator converges to the constant 993, the large n
behaviour of the denominator is (n + 1).) By the ratio test (where we have

ρ = limn→∞

∣∣∣an+1

an

∣∣∣ = 0) it follows that the series is absolutely convergent.

3. We may write the series
∑∞

n=1
(2−x)n
3nn1/3 as

∑∞
n=1 an(x− 2)n, where

an = (−1)n
1

3nn1/3
.

We have

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

3nn1/3

3n+1(n+ 1)1/3
= lim

n→∞

1

3

(
n

n+ 1

)1/3

=
1

3
,

1



so that the radius of convergence is R = 1/L = 3. [1 point] The point x = 5 gives
the series

∞∑
n=1

(−1)n
1

n1/3

which is convergent using the alternating series test. [1 point] The point x = −1
gives the series

∞∑
n=1

1

n1/3

which is divergent since it is a p-series with p = 1/3 ≤ 1. We conclude that the
interval of convergence is (−1, 5]. [1 point]

4. At least two different approaches can be taken to determining the Taylor series;
both give the correct solution and therefore score 2 points. [ It does not really
matter how the resulting series is written, as long as the terms are correct for n ≥ 1
and the series evaluates to 1

2 for x = 0. ]

• Write

f(x) =
x

1 + x
=
x+ 1

1 + x
− 1

1 + x
= 1− 1

2 + (x− 1)

= 1− 1

2

(
1

1 + (x− 1)/2

)
= 1− 1

2

∞∑
n=0

(−1)n
(
x− 1

2

)n

=
1

2
+

∞∑
n=1

(−1)n+1 1

2n+1
(x− 1)n.

• For f(x) = x
1+x we have

f ′(x) =
1

1 + x
− x

(1 + x)2
=

1

(1 + x)2
, f (2)(x) =

(−2)

(1 + x)3
,

and by induction

f (n)(x) = (−1)n+1 n!

(1 + x)n+1
for all n ≥ 1,

so that f (n)(1) = (−1)n+1 n!
2n+1 for all n ≥ 1. The resulting Taylor series is

∞∑
n=0

f (n)(1)
(x− 1)n

n!
=

1

2
+

∞∑
n=1

(−1)n+1 1

2n+1
(x− 1)n.

We still have to determine the radius of convergence [1 point]. We have for
an = (−1)n+1 1

2n+1 that

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

2n+1

2n+2
=

1

2
,

so that by the ratio test the radius of convergence is R = 1/L = 2.
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5. (a) We have [1 point]

u • v =

 4
1
−2

 •
1

2
1

 = 4 + 2− 2 = 4,

and [1 point]

u× v =

 4
1
−2

×
1

2
1

 =

 1 · 1− (−2) · 2
−(4 · 1− (−2) · 1)

4 · 2− 1 · 1

 =

 5
−6
7

 = 5i− 6j + 7k.

(b) We have [2 points]

uv =

(
u • v
|v|2

)
v =

(
4

12 + 22 + 12

)1
2
1

 =

2
3
4
3
2
3

 = 2
3 i + 4

3 j + 2
3k.

(c) [2 points] This plane is given by

4(x− 2) + (y − 1)− 2(z − 4) = 0

(which can be read off directly from u =

 4
1
−2

 and the point P = (2, 1, 4))

or equivalently
4x+ y − 2z = 1.

(d) The line L has parametrization r(t) =

2
1
4

+ t

1
2
1

 =

 2 + t
1 + 2t
4 + t

 [1 point].

Different solution methods, all good for 1 point:

– The distance from the origin to r(t) is given for t ∈ R by

|r(t)| =
√

(2 + t)2 + (1 + 2t)2 + (4 + t)2 =
√

6t2 + 16t+ 21.

We have

|r(t)|2 = 6t2 + 16t+ 21 = 6(t+ 4
3)2 +

31

3

which is minized at t0 = −4
3 , giving

|r(t0)| =
√

31

3
=

1

3

√
93.

– The distance is minimized when the position vector r(t) is orthogonal to
the direction v, i.e. we require

0 = v • r(t) = (2 + t) + 2(1 + 2t) + 1(4 + t) = 8 + 6t,

which is satisfied at t0 = −4
3 . We still need to compute the distance at

t = t0, using the formula for |r(t)| given above.
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– One might remember the formula∣∣∣∣r0 − r1 −
v • (r0 − r1)

|v|2
v

∣∣∣∣
from the lectures, or

|(r0 − r1)× v|
|v|

,

from the book, which could be applied for

r0 =

0
0
0

 , r1 =

2
1
4

 and v =

1
2
1

 ,

giving the same answer
√

31
3 = 1

3

√
93.

6. f(x, y) = cos(xy)
1−y2 .

(a) Each correct partial derivative scores 1 point:

∂f

∂x
(x, y) = −y sin(xy)

1− y2
, and

∂f

∂y
(x, y) = −x sin(xy)

1− y2
+

2y cos(xy)

(1− y2)2
.

(b) [2 points] The tangent plane is then given, for (x0, y0) = (1/2, π) by

z = f(x0, y0) +
∂f

∂x
(x0, y0)(x− x0) +

∂f

∂y
(x0, y0)(y − y0)

= 0− π

1− π2
(x− 1/2)− 1

2(1− π2)
(y − π)

or equivalently (
π

π2 − 1

)
x+

(
1

2(π2 − 1)

)
y − z =

π

π2 − 1
.

(For other expressions, check if the plane has normal

 π/(π2 − 1)
1/(2(π2 − 1))

−1

 and

P0 = (x0, y0, z0) = (1/2, π, 0) lies on the plane.)
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