
Resit Calculus 2, 7 February 2019, Solutions

1. a) First consider
∞∑
n=1

∣∣∣ sin (n)√
1+n3

∣∣∣. Since | sin (n)| < 1 we have

∣∣∣∣ sin (n)√
1 + n3

∣∣∣∣ ≤ 1√
1 + n3

<
1

n3/2

and since
∞∑
n=1

1
n3/2 converges (p-series with p = 3/2 > 1), the series

∞∑
n=1

sin (n)√
n3+1

converges absolutely (comparison test).

b) First consider
∞∑
n=1

∣∣∣∣(−1)n
arctan (n)√

n

∣∣∣∣ =

∞∑
n=1

arctan (n)√
n

.

We will use the limit comparison test:

lim
n→∞

arctan (n)√
n

÷ 1√
n

=
π

2
.

And because
∞∑
n=1

1√
n

diverges (p-series with p = 1/2 < 1), the series
∞∑
n=1

arctan (n)√
n

diverges also. This means that
∞∑
n=1

(−1)n arctan (n)√
n

is not absolutely convergent.

Now use the alternating series test:
(1) The series is clearly alternating,

(2) The sequence
{

arctan (n)√
n

}
is decreasing (introduce f(x) = arctan (x)√

x
, then

f ′(x) = 2x−(1+x2) arctan (x)
2x
√
x(1+x2)

< 0 for large x, so f is ultimately decreasing), and

(3) The sequence
{

arctan (n)√
n

}
has limit 0.

So the series
∞∑
n=1

(−1)n arctan (n)√
n

is convergent.

Finally we can conclude that the series is conditionally convergent.

2. We use the ratio test:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣(2x− 5)2(n+1)

(n+ 1)4 9n+1

∣∣∣∣∣÷
∣∣∣∣(2x− 5)2n

n4 9n

∣∣∣∣
=
|2x− 5|2

9
lim
n→∞

n4

(n+ 1)4
=
|2x− 5|2

9
.

So the series converges absolutely for |2x − 5|2 < 9, that is for 1 < x < 4, and
diverges for |2x− 5|2 > 9.
Now determine the behavior in the endpoints: For both x = 1 and x = 4 we find
the p-series

∑∞
n=1

1
n4 which is convergent. So the interval of convergence is [1, 4].

3. a) Use the Maclaurin-series representation for the exponential function:

et =

∞∑
n=0

tn

n!
, which converges for all t ∈ R.
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This yields (substitute t = x2 and t = −x2)

1

2

(
ex

2 − e−x2
)

=
1

2

∞∑
n=0

x2n

n!
−
∞∑
n=0

(−1)nx2n

n!
=

1

2

∞∑
n=0

(1− (−1)n)
x2n

n!
.

Now 1− (−1)n = 0 for even n, and 1− (−1)n = 2 for odd n. This results in

f(x) =
1

2

∞∑
n=0

(1− (−1)2n+1)
x2(2n+1)

(2n+ 1)!
=
∞∑
n=0

x4n+2

(2n+ 1)!
.

b) Since the Maclaurin-series converges for all x ∈ R we may use term-by-term
differentiation. This yields

f ′(x) =

∞∑
n=0

d

dx

x4n+2

(2n+ 1)!
=

∞∑
n=0

4n+ 2

(2n+ 1)!
x4n+1 =

∞∑
n=0

2
1

(2n)!
x4n+1.

On the other hand f ′(x) = 1
2

(
2xex

2
+ 2xe−x

2
)

= x(ex
2
+e−x

2
). Now substitute

x = 1 in both expressions, and divide by 2, to obtain

∞∑
n=0

1

(2n)!
=
e+ e−1

2
.

4. a) u • v = 0 + 0− 2 = −2 and u× v =

 2
−6
6

 = 2i− 6j + 6k.

b) uv =
u • v
v • v

v =
−2

8
v =

 0
−1/2
−1/2

 = −1

2
j− 1

2
k.

c) The equation is:

3(x− 1) + 0(y − 2)− 1(z − 3) = 0, or equivalently 3x− z = 0.

5. a) Calculate both first partial derivatives and set them equal to 0:

fx(x, y) = 0 =⇒ 6x2 − 30 + 6y = 0 =⇒ y = 5− x2.

fy(x, y) = 0 =⇒ 6x+ 6y + 6 = 0 =⇒ y = −1− x.

It follows that 5−x2 = −1−x, so x2−x−6 = (x−3)(x+2) = 0, with solutions
x = 3 and x = −2. Therefore we find two critical points: S1 = (3,−4) and
S2 = (−2, 1).

b) For general (x, y) we find fxx(x, y) = 12x, fyy(x, y) = 6 and fxy(x, y) = 6 =
fyx(x, y). So we find fxx(x, y)fyy(x, y) − fxy(x, y)fyx(x, y) = 36(2x − 1). This
implies that S2 is a saddle point (fxxfyy − fxyfyx < 0) and that f has a local
minimum value in S1 (fxxfyy − fxyfyx > 0 and fxx > 0).
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c) The unit vector v in the same direction as u is given by

v =
u

‖u‖
=

1

5

(
3
−4

)
. Furthermore ∇f(1, 2) =

(
fx(1, 2)
fy(1, 2)

)
=

(
−12
24

)
.

So Dv(1, 2) = v • ∇f(1, 2) = −132
5 .

6. a) Make a sketch of the domain. Then you can easily verify that∫ 1

0

∫ 1

√
x

ln (1 + y3) dy dx =

∫ 1

0

∫ y2

0
ln (1 + y3) dx dy

=

∫ 1

0
ln (1 + y3)

[
x
]x=y2
x=0

dy =

∫ 1

0
y2 ln (1 + y3) dy

(∗)
=

∫ 2

1

1

3
ln (t) dt

(∗∗)
=

1

3

[
t ln (t)− t

]t=2

t=1
=

1

3
(2 ln (2)− 1).

At (∗) we used the substitution t = 1 + y3 and at (∗∗) we used integration by
parts.

b) Again sketch the domain. It is that part of the disk around (0, 0) with radius√
5, under the line y = 0. Using x = r cos (θ), y = r sin (θ) we get∫ ∫

S
e−x

2−y2 dA =

∫ √5
0

∫ 2π

π
re−r

2
dθ dr =

= π

∫ √5
0

re−r
2
dr = π

[
− 1

2
e−r

2
]√5
0

=
π

2

(
1− e−5

)
.

7. Suppose w = 2 + 2i and z =
√

3 + i. Then |w| =
√

8 = 2
√

2 , arg (w) = π
4 , |z| = 2

and arg (z) = π
6 . Then ∣∣∣∣w3

z4

∣∣∣∣ =
|w|3

|z|4
=

16
√

2

16
=
√

2

and

arg

(
w3

z4

)
= 3 arg (w)− 4 arg (z) =

1

12
π.

Therefore
(2 + 2i)3

(
√

3 + i)4
=
√

2

(
cos

(
1

12
π

)
+ i sin

(
1

12
π

))
,

so a =
√

2 cos ( 1
12π) en b =

√
2 sin ( 1

12π). [This may also be written as a = 1
2 + 1

2

√
3

and b = −1
2 + 1

2

√
3, which would be the result of a slightly different calculation.

Both answers are correct.]

8. This is a linear differential equation of order one. First divide both sides by x2 to
get

y′(x)− 1

x2
y(x) =

1

x2
.
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Now remark that an integrating factor is e
∫
− 1

x2
dx = e

1
x . This yields

d

dx

(
y(x)e

1
x

)
=

1

x2
e

1
x =⇒ y(x)e

1
x =

∫
1

x2
e

1
x dx = −e

1
x + C.

[You can use the substitution t = 1
x if necessary.] So the general solution is

y(x) = −1 + Ce−
1
x , C ∈ R.

Substitution of the initial value gives

2 = y(1) = −1 + Ce−1, so C = 3e.

The solution of the initial value problem is therefore y(x) = −1 + 3e1−
1
x .

[This problem can also be solved using separation of the variables!]
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