Second test Calculus 2, 18 December 2018, Solutions

1. First

$$\frac{\partial}{\partial y}f(2x - 3y, 4xy) = -3f_1(2x - 3y, 4xy) + 4xf_2(2x - 3y, 4xy).$$

Then (to shorten the formulas somewhat we write u = 2x - 3y and v = 4xy).

$$\frac{\partial^2}{\partial x \partial y} f(u, v) = \frac{\partial}{\partial x} \left(-3f_1(u, v) + 4xf_2(u, v) \right) =$$

$$= -3 \left(2f_{11}(u, v) + 4yf_{12}(u, v) \right) + 4f_2(u, v) + 4x \left(2f_{21}(u, v) + 4yf_{22}(u, v) \right) =$$

$$= 4f_2(u, v) - 6f_{11}(u, v) - 12yf_{12}(u, v) + 8xf_{21}(u, v) + 16xyf_{22}(u, v).$$

2. a) Calculate both first partial derivatives and set them equal to 0:

$$f_x(x,y) = 0 \Longrightarrow y^2 - 2xy = 0.$$

$$f_y(x,y) = 0 \Longrightarrow 2xy - x^2 - 3y^2 + 4 = 0.$$

The first equation yields y=0 (case I) or y=2x (case II). Case I: substitution of y=0 in the second equation gives $x^2=4$, so x=2 or x=-2. So we find two critical points $S_1=(2,0)$ and $S_2=(-2,0)$. Case II: substitution of y=2x in the second equation yields $9x^2=4$, so $x=\frac{2}{3}$ or $x=-\frac{2}{3}$. So we find two more critical points $S_3=(\frac{2}{3},\frac{4}{3})$ and $S_4=(-\frac{2}{3},-\frac{4}{3})$.

b) For general (x, y) we find

$$f_{xx}(x,y) = -2y$$
, $f_{yy}(x,y) = 2x - 6y$ and $f_{xy}(x,y) = 2y - 2x = f_{yx}(x,y)$.

So the determinant of the Hesse matrix is

$$f_{xx}(x,y)f_{yy}(x,y) - f_{xy}(x,y)f_{yx}(x,y) = 4(2y^2 + xy - x^2).$$

This implies that S_1 and S_2 are saddle points $(f_{xx}f_{yy} - f_{xy}f_{yx} = -16 < 0)$ and that f has a local maximum value $\frac{32}{9}$ in S_3 $(f_{xx}f_{yy} - f_{xy}f_{yx} = 16 > 0$ and $f_{xx} = -\frac{8}{3} < 0)$ and a local minimum value $-\frac{32}{9}$ in S_4 $(f_{xx}f_{yy} - f_{xy}f_{yx} = 16 > 0$ and $f_{xx} = \frac{8}{3} > 0)$.

- c) The extreme values $\frac{32}{9}$ and $-\frac{32}{9}$ found in 2b) are local values. This can be shown by investigating $f(0,y)=-y^3+4y$. Clearly f tends to $-\infty$ when $y\to\infty$ and f tends to ∞ when $y\to-\infty$.
- 3. Introduce the Lagrange function $L(x, y, \lambda) = xy + \lambda(4x^2 + y^2 8)$ and find its critical points:

$$\begin{cases}
0 = \frac{\partial L}{\partial x} = y + 8\lambda x & (A) \\
0 = \frac{\partial L}{\partial y} = x + 2\lambda y & (B) \\
0 = \frac{\partial L}{\partial \lambda} = 4x^2 + y^2 - 8 & (C)
\end{cases}$$

Multiply equation (A) with y and multiply equation (B) with 4x. Then subtract one from the other to eliminate λ and to obtain $y^2 = 4x^2$. Substitute this result in equation (C) to obtain $x^2 = 1$, so x = 1 or x = -1. So we find four critical points: $S_1 = (1, 2), S_2 = (1, -2), S_3 = (-1, 2)$ and $S_4 = (-1, -2)$. Now calculate $f(S_1) = f(S_4) = 2$ (maximum value) and $f(S_2) = f(S_3) = -2$ (minimum value).

1

4. a) Since we cannot find an antiderivative of $\frac{x}{1+x^5}$ easily we will reverse the order of integration. Make a sketch of the domain and find:

$$\int_{0}^{1} \int_{\sqrt{y}}^{1} \frac{x\sqrt{y}}{1+x^{5}} dx dy = \int_{0}^{1} \int_{0}^{x^{2}} \frac{x\sqrt{y}}{1+x^{5}} dy dx = \int_{0}^{1} \frac{x}{1+x^{5}} \left[\frac{2}{3} y\sqrt{y} \right]_{y=0}^{y=x^{2}} dx$$
$$= \int_{0}^{1} \frac{2}{3} \frac{x^{4}}{1+x^{5}} dx = \left[\frac{2}{15} \ln (1+x^{5}) \right]_{x=0}^{x=1} = \frac{2}{15} \ln (2).$$

b) Again sketch the domain. It is the part of the (x, y)-plane between two circles with center (0,0) and radius 1 resp. $\sqrt{2}$, under the line y=x and above the line y=-x. Using polar coordinates $x=r\cos(\theta), y=r\sin(\theta)$ we get

$$\int \int_{S} x \sqrt{x^{2} + y^{2}} dA = \int_{-\pi/4}^{\pi/4} \int_{1}^{\sqrt{2}} r^{3} \cos(\theta) dr d\theta =$$

$$= \int_{-\pi/4}^{\pi/4} \left[\frac{1}{4} r^{4} \right]_{r=1}^{r=\sqrt{2}} \cos(\theta) d\theta = \int_{-\pi/4}^{\pi/4} \frac{3}{4} \cos(\theta) d\theta = \left[\frac{3}{4} \sin(\theta) \right]_{\theta=-\pi/4}^{\pi/4} = \frac{3}{4} \sqrt{2}.$$

5. a) Multiply numerator and denominator with the complex conjugate of the denominator:

$$z = \frac{4-i}{3-2i} \times \frac{3+2i}{3+2i} = \frac{12+5i-2i^2}{9-4i^2} = \frac{14+5i}{13},$$

so the real part of z is $\frac{14}{13}$ and the imaginary part of z is $\frac{5}{13}$.

b) We have

$$|z^2| = |\sqrt{3} - i| = 2$$
 and $\arg(z^2) = \arg(\sqrt{3} - i) + 2k\pi = -\frac{\pi}{6} + 2k\pi$.

Since $|z^2| = |z|^2$, the first equation yields $|z| = \sqrt{2}$. And since $\arg(z^2) = 2\arg(z)$ the second equation gives $\arg(z) = -\frac{\pi}{12} + k\pi$. So the two solutions are (choose k = 0, 1):

$$z_1 = \sqrt{2} \left(\cos \left(-\frac{1}{12} \pi \right) + i \sin \left(-\frac{1}{12} \pi \right) \right),$$
$$z_2 = \sqrt{2} \left(\cos \left(\frac{11}{12} \pi \right) + i \sin \left(\frac{11}{12} \pi \right) \right).$$

- 6. First multiply the equation by r, which leads to $r^2 = 2r\sin\theta + 4r\cos\theta$. Then the transformation from polar to rectangular coordinates $(x = r\cos\theta \text{ and } y = r\sin\theta)$ gives $x^2 + y^2 = 2y + 4x$. This can be rewritten as $(x 2)^2 + (y 1)^2 = 5$, a circle with center (2, 1) and radius $\sqrt{5}$.
- 7. This is a first order differential equation that is separable. Furthermore it is clear that $y \equiv 0$ (so y(x) = 0 for all x) is a solution. Now assume $y \not\equiv 0$ and separate the variables to find (you may substitute $1 + x^2 = t$ in the second integral):

$$\int \frac{1}{\sqrt{y}} dy = \int \frac{x}{1+x^2} dx \Longrightarrow 2\sqrt{y} = \frac{1}{2} \ln(1+x^2) + C,$$

so the general explicit solutions are $y(x) = \frac{1}{16} \left(\ln (1 + x^2) + 2C \right)^2$, $C \in \mathbb{R}$ and $y \equiv 0$.

 2

8. Substitute $y(x) = e^{rx}$. Then the auxiliary equation becomes

$$r^2 + 2r + 5 = (r+1)^2 + 4 = 0,$$

with two complex solutions r = -1 + 2i and r = -1 - 2i. So the general real solution is:

$$y(x) = c_1 e^{-x} \cos(2x) + c_2 e^{-x} \sin(2x), c_1, c_2 \in \mathbb{R}.$$

Substitution of the first initial value condition yields $3 = y(0) = c_1$. Now differentiate the general solution to get

$$y'(x) = -c_1 e^{-x} \cos(2x) - 2c_1 e^{-x} \sin(2x) - c_2 e^{-x} \sin(2x) + 2c_2 e^{-x} \cos(2x).$$

Finally substitute the second initial value condition (and also use $c_1 = 3$), to get

$$-3 = y'(0) = -c_1 + 2c_2 = -3 + 2c_2$$
, so $c_2 = 0$.

So the solution of this initial value problem is $y(x) = 3e^{-x}\cos(2x)$.