
Resit Calculus 2, 5 April 2018, Solutions

1. a) (3 points) First consider
∞∑
n=1

∣∣∣ (−1)n
n arctan (n)

∣∣∣ =
∞∑
n=1

1
n arctan (n) . Since lim

n→∞
arctan (n) =

π
2 we can compare the general term with 1

n . This yields lim
n→∞

1
n arctan (n) : 1

n = 2
π

and since
∞∑
n=1

1
n diverges (p-series with p = 1), the series

∞∑
n=1

1
n arctan (n) also

diverges (limit comparison test). So
∞∑
n=1

(−1)n
n arctan (n) is not absolutely convergent.

Now use the alternating series test: (1) the series is alternating, (2) the se-

quence
{

1
n arctan (n)

}
is decreasing (since n and arctan (n) are both increasing),

and (3) the sequence
{

1
n arctan (n)

}
has limit 0. So the series

∞∑
n=1

(−1)n
n arctan (n) is

convergent. Finally we can conclude that the series is conditionally convergent.

b) (1 point) Since lim
n→∞

√
1 + 1

n2 = 1 it is clear that the general term of this series

does not converge to 0. Therefore the series is divergent (general term test).

2. We use the ratio test:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣(x+ 3)2(n+1)

(n+ 1)24n+1

∣∣∣∣∣÷
∣∣∣∣(x+ 3)2n

n24n

∣∣∣∣
=
|x+ 3|2

4
lim
n→∞

n2

(n+ 1)2
=
|x+ 3|2

4
.

So the series converges absolutely for |x + 3|2 < 4, that is for −5 < x < −1, and
diverges for |x + 3|2 > 4. Now determine the behavior in the endpoints: For both
x = −5 and x = −1 we find the p-series

∑∞
n=1

1
n2 which is convergent. So the interval

of convergence is [−5,−1].

3. a) Use the geometric series
1

1− t
=

∞∑
n=0

tn, which converges for all t ∈ (−1, 1).

This yields (substitute t = −x4)

2x

1 + x4
= 2x · 1

1− (−x4)
= 2x

∞∑
n=0

(
−x4

)n
=
∞∑
n=0

2(−1)nx4n+1,

converging for | − x4| < 1, so for |x| < 1.

b) See part a). So the representation is valid for all x ∈ (−1, 1).

c) Remark that d
dx arctan (x2) = 2x

1+x4
, which is exactly the function considered in

part a). So we can find the Maclaurin series-representation for arctan (x2) by
termwise integration of the representation given in part a). So on (−1, 1) we
have

arctan (x2) =

∫ x

0

∞∑
n=0

2(−1)nx4n+1 dx =
∞∑
n=0

2(−1)n
∫ x

0
x4n+1 dx

=
∞∑
n=0

2(−1)n

4n+ 2
x4n+2

∣∣∣x
0

=

∞∑
n=0

(−1)n

2n+ 1
x4n+2.
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4. a) A normal vector of the plane is perpendicular to all vectors in that plane. Two
of these vectors are: 1

−1
1

−
 0

2
3

 =

 1
−3
−2

 and

 1
−1
1

−
−2

0
−1

 =

 3
−1
2

 .

So a normal vector is given by: 1
−3
−2

×
 3
−1
2

 =

−8
−8
8

 .

So an equation of the plane is −8(x−1)−8(y+1)+8(z−1) = 0, or equivalently
x+ y − z + 1 = 0.

b) The distance from the point (2, 2, 1) to this plane is:

|2 · 1 + 2 · 1 + 1 · (−1)− (−1)|√
12 + 12 + (−1)2

=
4√
3

=
4

3

√
3.

5. Use the chain rule:

∂

∂x
f(xey, exy2) = eyf1(xe

y, exy2) + exy2f2(xe
y, exy2)

and
∂

∂y
f(xey, exy2) = xeyf1(xe

y, exy2) + 2exyf2(xe
y, exy2).

6. a) Calculate both first partial derivatives and set them equal to 0:

fx(x, y) = 0 =⇒ 6x− 18 + 6y = 0 =⇒ x = 3− y.

fy(x, y) = 0 =⇒ 6x− 6y2 + 12y + 18 = 0.

Substitution of x = 3 − y in the second equation gives y2 − y − 6 = 0 with
solutions y = 3 or y = −2. Therefore we find two critical points: S1 = (0, 3)
and S2 = (5,−2).

b) For general (x, y) we find fxx(x, y) = 6, fyy(x, y) = −12y + 12 and fxy(x, y) =
6 = fyx(x, y). So we find fxx(x, y)fyy(x, y) − fxy(x, y)fyx(x, y) = 36(1 − 2y).
This implies that S1 is a saddle point (fxxfyy − fxyfyx < 0) and that f has a
local minimum value in S2 (fxxfyy − fxyfyx > 0 and fxx > 0).

c) The unit vector v in the same direction as u is given by

v =
u

‖u‖
=

1

5

(
−3
4

)
. Furthermore ∇f(1, 2) =

(
fx(1, 2)
fy(1, 2)

)
=

(
0
24

)
.

So Dv(1, 2) = v • ∇f(1, 2) = 96
5 .
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7. a) Make a sketch of the domain. Then you can easily verify that∫ √π
0

∫ √π
x

y2 cos (y2) dy dx =

∫ √π
0

∫ y

0
y2 cos (y2) dx dy

=

∫ √π
0

y2 cos (y2)
[
x
]x=y
x=0

dy =

∫ √π
0

y3 cos (y2) dy

(∗)
=

∫ π

0

1

2
t cos (t) dt

(∗∗)
=

1

2

[
t sin (t) + cos (t)

]t=π
t=0

= −1.

At (∗) we used the substitution t = y2 and at (∗∗) we used integration by parts.

b) Again sketch the domain. It is that part of the disk around (0, 0) with radius
√

3,
above the line y = x and right from the y-axis. Using x = r cos (θ), y = r sin (θ)
we get ∫ ∫

S

1√
1 + x2 + y2

dA =

∫ √3
0

∫ π/2

π/4

r√
1 + r2

dθ dr =

=
π

4

∫ √3
0

r√
1 + r2

dr =
[π

4

√
1 + r2

]√3
0

=
π

4
(2− 1) =

π

4
.

8. First calculate eiπ/3 = cos (π/3) + i sin (π/3) = 1
2 + 1

2 i
√

3. Use this and multiply
numerator and denominator by 2 and multiply the result by the complex conjugate
of the denominator. This yields

1

1− eiπ/3
=

1
1
2 −

1
2 i
√

3
=

2

1− i
√

3
=

2

1− i
√

3
· 1 + i

√
3

1 + i
√

3
=

=
2(1 + i

√
3)

1 + 3
=

1

2
+

1

2
i
√

3.

So a = 1
2 en b = 1

2

√
3.

9. This is a linear differential equation of order one. First divide both sides by x2 to
get

y′(x) +
1

x2
y(x) =

1

x2
.

Now remark that an integrating factor is e
∫

1
x2
dx = e−

1
x . This yields

d

dx

(
y(x)e−

1
x

)
=

1

x2
e−

1
x =⇒ y(x)e−

1
x =

∫
1

x2
e−

1
x dx = e−

1
x + C.

[You can use the substitution t = − 1
x if necessary.] So the general solution is

y(x) = 1 + Ce
1
x , C ∈ R.

Substitution of the initial value gives

2 = y(1) = 1 + Ce, so C = e−1.

The solution of the initial value problem is therefore y(x) = 1 + e
1
x
−1.

[This problem can also be solved using separation of the variables!]
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